Restoration Plan

SCO Project Number 050657901

Prepared for:

NCDENR Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

July 2007

Restoration Plan

SCO Project Number 050657901

Prepared by:

701 Corporate Center Drive Suite 475 Raleigh, NC, 27607 Phone: 919-854-6200

Fax: 919-854-6259

Project Manager:
Ron Johnson
Phone: 919-854-6210
e-mail: Ron.Johnson@earthtech.com

EXECUTIVE SUMMARY

The Cat Creek stream and wetland restoration site in Macon County, North Carolina was identified by the North Carolina Department of Transportation (NCDOT) as a potential stream, riparian buffer, and wetland restoration site. The site consists of reaches on four separate tracts of land referred to as: Swartwout, Waldroop, Parker, and Preserve. The Swartwout, Parker, and Preserve tracts have been purchased by the NCDOT, while the Waldroop tract is in private ownership. Following initial studies of the site by NCDOT beginning in 2002, the site was turned over to the Ecosystem Enhancement Program (EEP) in 2005 for final design, construction, and monitoring.

The proposed restoration area entails about 7,450 linear feet of Cat Creek, and 848 linear feet of three small tributaries in a rural area of Macon County. Cat Creek and the tributaries have been impacted by past land use including use as pastureland and a golf course.

Both stream restoration and enhancement is proposed for various reaches of Cat Creek dependant upon the existing stream conditions and other constraints. Stream restoration will consist of Restoration, Enhancement Level 1, and Enhancement Level 2. Restoration will consist of modifying the streams dimension, pattern and profile to achieve a stable stream channel. Reaches proposed for Enhancement Level 1 activities will have their dimension and profile modified, but pattern will remain the same. Enhancement Level 2 activities will consist of fencing out livestock, spot stabilization, and planting a riparian buffer. The type of restoration by tract is presented in the table below. A Conservation Easement will be obtained for the Waldroop tract

Wetland restoration and enhancement is proposed for the Swartwout, Parker, and Preserve tracts. Restoration activities will restore predisturbance hydrology to the site by removing fill. Following fill removal these areas will be planted with native hardwoods. Areas proposed for enhancement are areas that are still jurisdictional wetlands. These areas, at a minimum, will be planted with hardwoods. In some of the enhancement areas, hydrologic enhancement will also occur with the removal of a small amount of fill.

The following table presents the restoration/enhancement activity by tract and by reach.

Table 1. Project Restoration Structure and Objectives

Reach ID	Restoration Type	Priority Approach	Existing Linear Footage or Acreage	Designed Linear Footage or Acreage	Comment
Swartwout (wetland)	Restoration	NA	0.55 ac	2.27 ac	Small amount of enhancement also included
Swartwout-Upper	Enhancement 2	NA	880	880	Stabilization of eroded areas and planting riparian buffer and fencing
Swartwout- Lower	Restoration	Priority 1	770	882	X
Swartwout-UT 1	Restoration	Priority 1	463	581	

Reach ID	Restoration Type	Priority Approach	Existing Linear Footage or Acreage	Designed Linear Footage or Acreage	Comment
Waldroop-Upper	Enhancement 2	NA	1463	1463	Livestock exclusion and Riparian buffer expansion
Waldroop-Lower	Enhancement 1	Priority 2	480	480	Active pastureland with cattle use
Parker (wetland)	Restoration	NA	0 ac	4.4 ac	Former golf course
Parker	Restoration	Priority 1	1750	1879	
Parker-UT 2	Restoration	Priority 1	210	374	
Parker-UT 3	Restoration	Priority 1	165	338	
Preserve (wetland)	Restoration	NA	0.66 ac	1.62 ac	Former golf course
Preserve	Enhancement 1	NA	1765	1852	
Preserve – UT 4	Restoration	Priority 1	110	210	

This project has the following goals:

- Provide a stable stream channel for the main channel and the unnamed tributaries to Cat Creek that neither aggrades nor degrades while maintaining their dimension, pattern, and profile with the capacity to transport their watershed's water and sediment load.
- Improve water quality and reduce erosion by stabilizing the stream banks for all streams by improving riparian vegetation.
- Improve aquatic habitat of the main channel and tributaries with the use of natural material stabilization structures such as root wads, rock vanes, woody debris, and a riparian buffer.
- Provide aesthetic value, wildlife habitat, and bank stability through the creation or enhancement of a riparian zone.
- Create a contiguous wildlife corridor and provide diverse amphibian habitat with added topographic and wetland features.
- Provide shading and biomass input to the stream and mast for wildlife when vegetation is mature.
- Livestock exclusion on Waldroop Tract.
- Enhance wetland biochemical-and geo-chemical processes over an extended area.

Table of Contents

1.0.	PROJECT SITE IDENTIFICATION AND LOCATION	1
	1.1 Directions to Project Site	1
	1.2 USGS Hydrologic Unit Code and NCDWQ River Basin Designations	1
2.0	WATERSHED CHARACTERIZATION	
	2.1 Drainage Area	2
	2.2 Surface Water Classification and Water Quality	3
	2.3 Physiography, Geology, and Soils	
	2.4 Historical Land Use and Development Trends	
	2.5 Endangered / Threatened Species	
	2.6 Cultural Resources	
	2.7 Potential Constraints	.11
	2.7.1 Property Ownership and Boundary	.12
	2.7.2 Site Access	
	2.7.3 Utilities	
	2.7.4 FEMA/ Hydrologic Trespass	
3.0	PROJECT SITE STREAMS	
	3.1 Methodology	
	3.1.1 Stream Survey	
	3.1.2 Stream Reference Reach Search	
	3.1.3 Stream Design	.15
	3.2 Swartwout Tract	
	3.2.1 Streams	
	3.2.2 Soils and Hydrology	
	3.2.3 Vegetation.	
	3.3 Waldroop Tract	.19
	3.3.1 Stream	.19
	3.3.2 Soils	.20
	3.3.3 Vegetation.	.20
	3.4 Parker Tract	.21
	3.4.1 Stream	.21
	3.4.2 Soils and Existing Wetland Conditions	.23
	3.4.3 Vegetation	
	3.5 Preserve Tract	
	3.5.1 Stream	.23
	3.5.2 Soils and Existing Wetland Conditions	.24
	3.5.3 Vegetation	
4.0	REFERENCE STREAMS	.26
	4.1 Bent Creek	.26
	4.2 Unnamed Tributary to Meadow Fork	.26
5.0	PROJECT SITE WETLANDS	27
	5.1 Methodology	27
	5.1.1 Soil Evaluation	
	5.1.2 Hydrologic Evaluation	27

5.1.3 Wetland Delineation	27
5.2 Swartwout Tract	
5.3 Parker Tract	
5.4 Preserve Tract	
6.0 REFERENCE WETLANDS	
7.0 PROJECT SITE RESTORATION PLAN	
7.1 General Principles	
7.1.1 Stream Restoration	33
7.1.2 Wetland	
7.1.3 Reforestation	34
7.2 Swartwout Tract	
7.2.1 Stream	
7.2.2 Wetland	
7.3 Waldroop Tract	
7.3.1 Stream	
7.3.2 Livestock Watering	
7.3.3 Riparian Buffers	
7.4 Parker Tract	
7.4.1 Stream	
7.4.2 Wetland	
7.5 Preserve Tract	
7.5.1 Stream	
7.5.2 Wetland	
7.6 Natural Plant Community Restoration	
7.7 On-site Invasive Species Management	
8.0 PERFORMANCE CRITERIA	49
8.1 Streams	
8.2 Wetlands	
8.3 Riparian Vegetation	
8.4 Photograph Documentation	
9.0 REFERENCES	51
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
TABLES	
Table 1. Project Restoration Structure and Objectives	i
Table 2. Drainage Areas	2
Table 3. Species under Federal Protection in Macon County	4
Table 4. Federal Species of Concern in Macon County	
Table 5. Swartwout Tract Existing Stream Conditions Summary	
Table 6. Waldroop Tract Existing Stream Conditions Summary	
Table 7. Parker Tract Existing Stream Conditions Summary	
Table 8. Preserve Tract Existing Stream Conditions Summary	
Table 9. HEC-RAS Analysis for Swartwout Tract	
Table 10. HEC-RAS Analysis for Parker Tract	42
Table 11. HEC-RAS Analyses for Preserve Tract	45

FIGURES

- Figure 1. Vicinity Map
- Figure 2. Watershed Map
- Figure 3. NRCS Soil Survey Map
- Figure 4. Swartwout Tract Existing Conditions
- Figure 5. North Carolina Mountain Rural Regional Curve
- Figure 6. Waldroop Tract Existing Conditions
- Figure 7. Parker Tract Existing Conditions
- Figure 8. Preserve Tract Existing Conditions
- Figure 9. Reference Reach Bent Creek
- Figure 10. Reference Reach Unnamed Tributary to Meadow Fork
- Figure 11. Swartwout Tract Wetland Delineation
- Figure 12. Parker Tract Wetland Delineation
- Figure 13. Preserve Tract Wetland Delineation
- Figure 14. Reference Wetland Cartoogechaye Creek

DESIGN SHEETS

Swartwout Tract Proposed Restoration Plan Waldroop Tract Proposed Restoration Plan Parker Tract Proposed Restoration Plan Preserve Tract Proposed Restoration Plan Longitudinal Profiles Reforestation Plans

APPENDICIES

- Appendix 1. Aquatic Survey Report
- Appendix 2. Existing Stream Conditions
- Appendix 3. Photo Log
- Appendix 4. Morphology Table
- Appendix 5. Soils Data and USACE Routine Wetland Determination Data Forms
- Appendix 6. Hydrographs and Precipitation Data
- Appendix 7. Sediment Transport Calculations

This page left intentionally blank

1.0. PROJECT SITE IDENTIFICATION AND LOCATION

The North Carolina Department of Transportation (NCDOT) initialed identified a portion of Cat Creek in Macon County, North Carolina for potential stream, riparian buffer, and wetland restoration and/or enhancement (**Figure 1**). Following initial studies by NCDOT beginning in 2002, the project was turned over to the Ecosystem Enhancement Program (EEP) in 2005 for design, construction and monitoring. The reaches of Cat Creek identified are located on four separate tracts of land: Swartwout, Waldroop, Parker, and Preserve. Three of the tracts, Swartwout, Parker, and Preserve have been purchased by NCDOT.

1.1 Directions to Project Site

The project site is located east of the town of Franklin in Macon County. Cat Creek Road (SR 1513) is located off of US 23/441 between Business 441 and US 64. If proceeding south on US 23 turn left onto Cat Creek Road. Proceed along Cat Creek Road for approximately 1.5 miles and turn left onto Ferguson Road to access the Preserve and the Parker tracts. Cat Creek crosses Ferguson Road about 1,900 feet from the turnoff from Cat Creek. Parking is available on either tract near the creek crossing.

To access the Waldroop Tract continue on Cat Creek Road past Ferguson about 0.5 mile. Bethel Church Road comes in from the right and just before the road there is a driveway on the left with a farmhouse and large barn beyond the farmhouse.

To access the Swartwout Tract continue on Cat Creek Road past Ferguson Road about 0.8 miles. Cat Creek Road takes an abrupt left turn (if you go straight you will be on Jack Cabe Road). Turn left (staying on Cat Creek Road). The Swartwout Tract is immediately on the right. A gate provides access to the field.

1.2 USGS Hydrologic Unit Code and NCDWQ River Basin Designations

Cat Creek is located in the Little Tennessee River Basin in USGS Cataloging Unit 06010202. The NCDWQ Sub-basin is 04-04-01.

2.0 WATERSHED CHARACTERIZATION

2.1 Drainage Area

The watershed to the end of the project site is approximately 3.6 square miles (**Figure 2**). Topography of the area is characterized as hilly with fairly flat floodplains adjacent to the large stream and steep mountains in the headwater region.

Cat Creek is a second to third-order stream. The headwaters originate about 1.5 miles east of the project area. Cat Creek flows from the end of the project area for approximately 0.5 miles before joining Rabbit Creek and then 1 mile before joining Lake Emory along the Little Tennessee River.

The floodplain along Cat Creek on the upper Swartwout Tract is wide to the west and narrow to the east due to the adjacent hillslope to the east. Once the main channel flows past the ridge the floodplain opens up and is relatively wide for a mountain stream. The floodplain for the UT to Cat Creek (UT1) and lower Swartwout is confined along the left bank due to the road slope but the floodplain to the right of the stream is relatively wide. The floodplain through the Waldroop, Parker, and Preserve Tracts is wide and flat until meeting the adjacent hillslopes. The small headwater tributaries that feed into Cat Creek are typically forested with few small cleared areas. However agricultural fields are present along the larger tributaries and Cat Creek.

The main drainage feature at the site is Cat Creek (**Figure 2**), a second to third order stream. The second largest drainage feature at the site is the Unnamed Tributary to Cat Creek (UT1) a second order stream. The stream enters the site from the east and flows approximately 464 feet south, before emptying into Cat Creek on the Swartwout Tract. The watershed for the Unnamed Tributary to Cat Creek (UT1) is approximately 0.86 square miles to the confluence with Cat Creek. The headwaters originate about 1 mile east of the confluence with Cat Creek. Several smaller unnamed tributaries enter Cat Creek on the other tracts. These streams include two small tributaries on the Parker Tract labeled UT2 and UT3. The first tributary UT2 is a second order stream and is shown on the USGS mapping. The second tributary (UT3) is a first order stream and does not appear on the USGS mapping. A fourth unnamed tributary (UT4) flows into Cat Creek on the Preserve Tract. This stream is also a first order stream and does not appear on the USGS mapping. There are also two first order streams that flow into Cat Creek on the Waldroop property. These streams were not "named" as no restoration work is proposed for them.

Table 2. Drainage Areas

Reach	Drainage Area (Square Miles)
Swartwout	2.1
UT-1	0.9
Waldroop	2.5
Parker	3.3
Preserve	3.6

The main land use throughout the watershed is agriculture with about half of the watershed remaining forested. Because the upland areas are not as conducive for farming, the majority of

the large pasture areas are located along the flat floodplains of Cat Creek. All of the parcels of land in the watershed support agriculture and/or single-family housing. From the windshield survey of the watershed, there is a large tract of land on Onion Mountain that is currently being subdivided for large home and land lots.

2.2 Surface Water Classification and Water Quality

Surface waters in North Carolina are assigned a classification by the DWQ that is designed to maintain, protect, and enhance water quality within the state. Cat Creek (NCDWQ Stream Index Number – 03-08-35) is classified as a Class C water body (NCDENR, 2001). Class C water resources are waters protected for aquatic life propagation and survival, fishing, wildlife, secondary recreation, and agriculture. Secondary recreation includes wading, boating, and other uses involving human body contact with water where such activities take place in an infrequent, unorganized, or incidental manner. There are no restrictions on watershed development activities. The unnamed tributaries that flow into Cat Creek have not been classified and therefore, carry the same Class C classification.

2.3 Physiography, Geology, and Soils

The project area in the Mountain Physiographic Province of North Carolina. It is underlain by sedimentary and metamorphic rocks of the Blue Ridge Belt. These include biotite gneiss-migmatic; interlayered and gradational with biotite-garnet gneiss and amphibolate with locally abundant quartz and alumino-silicates.

According to the Macon County Soil Survey (USDA NRCS, 1996) several soil types are present in the project area (**Figure 3**). The predominant soils mapped along the floodplain of Cat Creek are Reddies, Nikwasi, and an Udorthents-Urban Land complex. Only Nikwasi soils are considered to be hydric by the NRCS. Reddies soils may contain hydric inclusions. The surrounding uplands are mapped as Saunook and an Evaard-Cowee complex. Land use and management of these soils may impact the soils in the project area. Soil units mapped by the NRCS along the floodplain at the site are described below.

Reddies fine sandy loam (Re). This unit is a moderately well drained soil formed in recent alluvium and is found on nearly level to gently sloping small stream terraces. Surface runoff is slow. The seasonal high water table is 2.0 to 3.5 feet below the surface. It is frequently flooded for very brief periods. Permeability is moderately rapid within the surface layer and rapid or very rapid in the sub-surface horizon. This soil may have inclusions of Nikwasi and other soils. Flooding is the main limitation of this soil. Runoff from adjacent uplands is also a management concern.

Nikwasi fine sandy loam, frequently flooded (Nk). This unit is a poorly drained soil formed in recent alluvium and is found in depressions on nearly level floodplains along small streams. Surface runoff is very slow or ponded. The seasonal high water table is at the surface to 1 foot below the surface. It is frequently flooded for very brief periods. Permeability is moderately rapid within the surface horizon and the sub-surface horizon is rapidly permeable. Flooding,

wetness, and ponding are the main limitations of this soil. Runoff from adjacent uplands is also a management concern.

Udorthents-Urban Land complex (UFB). This unit includes both Udorthents and Urban Land in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale. The Udorthents map unit consists of borrow areas, landfills, and mines and major revegetated cut and fill areas associated with major highways, commercial sites, and golf courses. These areas are variable in steepness. The land on the Parker and Preserve Tract along Cat Creek are known to have once been a golf course.

2.4 Historical Land Use and Development Trends

The main land use throughout the watershed is agriculture with about half of the watershed remaining forested. Because the upland areas are not as conducive for farming, the majority of the large pasture areas are located along the flat floodplains of Cat Creek. All of the parcels of land in the watershed support agriculture and/or single-family housing. From the windshield survey of the watershed, there is a large tract of land on Onion Mountain that is currently being subdivided for large home and land lots.

2.5 Endangered / Threatened Species

Plants and animals with a federal classification of Endangered (E), Threatened (T), Proposed Endangered (PE), and Proposed Threatened (PT) are protected under provisions of Section 7 and Section 9 of the Endangered Species Act of 1973, as amended. The USFWS lists seven species under federal protection for Macon County (USFWS, 2006). These species are listed in **Table 3**. Critical Habitat for the spotfin chub and Appalachian elktoe are also designated within this county along the main stem of the Little Tennessee River.

Table 3. Species under Federal Protection in Macon County

Common Name		Scientific Name	Federal Status
Vertebr	ates		
Bog turt	le	Glyptemys muhlenbergii	T(S/A)
Indiana l	bat	Myotis sodalis	E
Spotfin o	chub	Cyprinella monacha	T
Invertel	orates		
Appalac	hian elktoe	Alasmidonta raveneliana	E
Littlewin	ng pearlymussel	Pegias fibula	Е
Vascula	r Plants		
Small-w	horled pogonia	Isotria medeoloides	T
Virginia	spiraea	Spiraea virginiana	T
E = T =	range.	s that is threatened with extinction throughout all that is likely to become endangered in the forese	
T(S/A) =	significant portion of i Threatened due to sin with other rare species	ts range. nilarity of appearance-a species that is threatened and is listed for its protection.	_
**	Obscure record – the o	late and/or location of observation is uncertain.	

Bog turtle (Glyptemys muhlenbergii)

Threatened due to Similarity of Appearance

Federally Listed: 1997

The bog turtle is a small freshwater turtle with a maximum carapace length of 11.4 cm (4.5 in). These turtles have a domed carapace that is weakly keeled and is light brown to ebony in color. The scutes have a lighter—colored starburst pattern. The plastron is brownish-black with contrasting yellow or cream areas along the midline. This species is distinguished by a conspicuous orange, yellow, or red blotch on each side of the head.

The bog turtle is semi-aquatic and is typically found in freshwater wetlands characterized by open fields, meadows, or marshes with slow-moving streams, ditches, and boggy areas. The bog turtle is also found in wetlands in agricultural areas subject to light to moderate livestock grazing, which helps to maintain an intermediate stage of succession. During the winter, this species hibernates just below the upper surface of mud. Mating occurs in May and June, and the female deposits two to six eggs in sphagnum moss or sedge tussocks in May, June, or July. The diet of the bog turtle is varied, consisting of beetles, lepidopteran and caddisfly larvae, snails, millipedes, pondweed and sedge seeds, and carrion.

The southern population of the bog turtle is listed as Threatened due to Similarity of Appearance to the northern population; therefore, the southern population is not afforded protection under Section 7 of the Endangered Species Act. No habitat exists in the project area for the bog turtle. There are freshwater wetlands characterized by open fields, meadows, or marshes with slow moving streams, ditches, or boggy areas. A search of the NHP database revealed no occurrences of the bog turtle within two miles.

Biological Conclusion

No Effect

No habitat for the bog turtle exists within the project area. No bogs are located on the site, and the wetland areas are small and isolated. No individuals of this species were observed during the site visit and none are recorded at NHP within two miles of the project site. This project will have no effect on this federally threatened species.

Indiana bat (Myotis sodalis)

Endangered

Federally Listed: 1967

The Indiana bat is a medium-sized myotis, less than two inches long, with a wingspan of nine to eleven inches. They weigh only 0.3 ounces. Fur is brownish to grayish black above and buff to light brown below. The feet are small and delicate and the calcar is strongly keeled.

Though extremely rare this bat is found in 27 states in the eastern United States. Hibernation occurs from October to April primarily in limestone caves or mines with stable temperatures between 38° and 43°F, and a relative humidity averaging 87 percent. The bats form large, dense clusters up to several thousand individuals. During the summer, Indiana bat maternity colonies require dead or dying trees with loose bark, a nearby water source, and areas to hunt for insects.

Males roost nearby, and have the same habitat requirements. The bats roost under the loose bark for warmth and protection from the elements or predators.

Biological Conclusion

No Effect

No habitat for the Indiana bat exists within the project area. No caves or mines are nearby, and no dead or dying trees with loose bark were observed. Cat Creek and its tributaries are not sufficiently wide to provide suitable foraging habitat for the bat. No individuals of this species were observed during the site visit and none are recorded at NHP within two miles of the project site. This project will have no effect on this federally endangered species.

Spotfin chub (Cyprinella monacha)

Threatened

Federally Listed: 1977

This small, elongate fish is recognized by the large black spot in the caudal region. The spotfin chub grows to a length of 3.6 in. The mouth is inferior, with a tiny pair of terminal labial barbels. Breeding males are brilliant turquoise on the back and sides and have white-tipped fins. Juveniles and adult females have olive-colored backs, silvery sides, and white undersides. The spotfin chub is believed to spawn in June. It apparently is a sight feeder, and its diet consists mainly of dipterans.

The habitat of the spotfin chub is moderate to large streams with alternating riffles and pools and clear, cool to warm, fast-flowing water. It is restricted to the Tennessee River drainage area. In North Carolina, it is known only from the Little Tennessee River in Macon and Swain counties, and has never been found in streams with significantly silted substrates.

Biological Conclusion

No Effect

The USFWS has designated critical habitat for this species within Macon County. The habitat includes the main channel of the Little Tennessee River from Lake Emory Dam at Franklin, downstream to the backwaters of Fontana Reservoir in Swain County. Cat Creek flows into Rabbit Creek, which flows into Lake Emory and the Little Tennessee River upstream from this Critical Habitat area.

Cat Creek is a small stream and is largely consist of long riffles with few pools and does not provide suitable habitat for the spotfin chub. No individuals of this species were observed during the site visit and none are recorded at NHP within two miles of the project site. This project will have no effect on this federally threatened species.

Appalachian elktoe (Alasmidonta raveneliana)

Endangered

Federally Listed: 1994

The Appalachian elktoe is recognized by a thin, kidney-shaped shell about 3.2 inch long, 1.4 inches high, and 1 inch wide. The outer shell surface of juvenile mussels is yellowish-brown whereas the adult shell is dark brown to greenish-black in color. Rays may be prominent to

obscure. The inside shell surface is shiny white to bluish-white, changing to a salmon, pinkish, or brownish color in the central and beak cavity portions of the shell.

Historical records reveal that this species once proliferated throughout the Upper Tennessee River system in western North Carolina and eastern Tennessee. In North Carolina populations were found in the Little Tennessee River system (Talula Creek, Graham County) and the French Broad River system, including the Nolichucky River (county unknown), the Little River (Transylvania County), and Swannanoa River (county unknown), the Pigeon River (Haywood county), and the main stem of the French Broad River (Buncombe County and an unknown county).

The Federal Register lists two known surviving populations of the Appalachian elktoe. One is in the Little Tennessee River between Emory Lake in Macon County and Fontana Reservoir in Swain County. The other is in the Nolichucky River system in Yancey and Mitchell counties. The habitat in these locations can be described as relatively shallow, medium-sized creeks and rivers with cool, well-oxygenated, moderate- to fast-flowing water. Substrates are gravelly mixed with cobble and boulders, or occasionally coarse and sandy.

Biological Conclusion

No Effect

The USFWS has designated critical habitat for this species within Macon County. The habitat includes the main channel of the Little Tennessee River from the backwaters of Fontana Lake upstream to the North Carolina-Georgia state line. Cat Creek flows into Rabbit Creek, which flows into the Little Tennessee River within this Critical Habitat area.

Cat Creek was surveyed for freshwater mussels on September 13, 2003. The site is described as poor quality habitat with heavy sediment load and no buffers. The substrate is mainly sand and gravel with few cobbles noted. Within the project area, Cat Creek contains high levels of silt. No mussels were observed during this survey. No occurrences of the Appalachian elktoe are recorded at NHP within two miles of the project site. The survey concluded No Effect for the Appalachian elktoe. A copy of the survey can be found in **Appendix 1**.

Littlewing pearlymussel (Pegias fibula)

Endangered

Federally Listed: 1988

This small freshwater bivalve mollusk attains an average adult size of 0.95 inches in length. The species name is descriptive of its wing-like appearance. The outer shell is usually eroded away in mature individuals, giving the shell a chalky appearance. In younger individuals the shell may appear light green or dark yellowish brown with dark rays of variable width along the shell's anterior surface. The nacre is whitish on the anterior border and salmon or flesh colored in the beak cavity.

This mussel is endemic to the southern Appalachian Mountains and the Cumberland Plateau regions. Historical records place this species in 24 stream reaches in several southeastern states, however the species is presently known from only six stream reaches. In North Carolina it is only known from a small portion of the Little Tennessee River Basin.

The littlewing pearlymussel prefers cool, clear, high-gradient streams. It is commonly found at the head of riffles, but also found in and below riffles on sand and gravel substrates with scattered cobbles. It also inhabits sand pockets between rocks, cobbles and boulders, and underneath large rocks. During spawning, it can be found lying on top or partially buried in sand and fine gravel between cobbles in only 6 to 10 inches of water.

Biological Conclusion

No Effect

Cat Creek was surveyed for freshwater mussels on September 13, 2003. The site is described as poor quality habitat with heavy sediment load and no buffers. The substrate is mainly sand and gravel with few cobbles noted. Within the project area, Cat Creek contains high levels of silt. No mussels were observed during this survey. No occurrences of the littlewing pearlymussel are recorded at NHP within two miles of the project site. The survey concluded No Effect for the littlewing pearlymussel. A copy of the survey can be found in **Appendix 1**.

Small whorled pogonia (Isotria medeoloides)

Threatened

Federally Listed: 1982

The specific epithet of the small whorled pogonia comes from the resemblance of this perennial orchid to young plants of Indian cucumber root (*Medeola virginiana*). However, the small whorled pogonia has a stout, hollow stem in contrast to the solid, slender stem of Indian cucumber root. The stem is 3.7 to 9.8 in tall, with a terminal whorl of 5 or 6 light green leaves that are elliptical in shape and measure up to 3 in by 1.5 in. One or two flowers are borne at the top of the stem, appearing from mid-May to mid-June. The flowers lack fragrance and nectar guides, and apparently are self-pollinating.

The small whorled pogonia was formerly scattered in 48 counties in 16 eastern states. Currently, the majority of populations are found in New England at the foothills of the Appalachian Mountains and in northern coastal Massachusetts. The habitat of the small whorled pogonia varies widely throughout its range, although there are a few common characteristics among the majority of sites. These include sparse to moderate ground cover; a relatively open understory; and proximity to features that create extensive, stable breaks in the canopy, such as logging roads or streams. The pogonia has been found in mature forests as well as stands as young as 30 years old. Forest types include mixed-deciduous/ white pine or hemlock in New England, mixed deciduous in Virginia, white pine/mixed-deciduous or white pine/oak-hickory in Georgia, and red maple in Michigan. Understory components in the southern part of the range are most commonly found to be flowering dogwood (*Cornus florida*), sourwood (*Oxydendron arboreum*), mountain laurel (*Kalmia latifolia*), American chestnut (*Castanea dentata*), witch hazel (*Hamamelis virginiana*), and flame azalea (*Rhododendron calendulaceum*). Early descriptions placed the small whorled pogonia on dry sites, but it has since been found on sites with high soil moisture.

Biological Conclusion

No Effect

No habitat for the small whorled pogonia exists within the project area. Most of the project area is open pasture or weedy fields and within the limited forested areas, the understory is dense. No occurrences of this species are recorded at NHP within two miles of the project site. This project will have no effect on this federally threatened species.

Virginia spiraea (Spiraea virginiana)

Threatened

Federally Listed: 1990

Virginia spiraea is a perennial shrub with arching, upright stems. Its growth form is described as "plastic" and varies depending upon age and environmental conditions. The roots are a complex system of horizontal rootstock with mats of small fibrous roots. If exposed, the horizontal rootstock gives rise to upright stems. Virginia spiraea typically has a diffuse branching pattern and grows to 3 to 10 ft in height. Leaves are simple, ovate to lanceolate, with an acute base. The leaf margins range from entire to completely serrate. Virginia spiraea flowers from late May to late July, with bright to creamy white flowers forming a corymb.

Virginia spiraea is typically found in disturbed sites along rivers and streams. It forms dense clumps around boulders and in rock crevices, and apparently depends on flood scour to eliminate woody competitors and create suitable early successional habitats. Typical habitat includes scoured banks of high gradient streams, or on meander scrolls, point bars, natural levees and braided features of lower stream reaches. In North Carolina, extant populations are known from Ashe, Macon, Mitchell, and Yancey counties. In Graham County, there is an historic record of an extirpated population.

Biological Conclusion

No Effect

The stream banks within the project area provides potential habitat for the Virginia spiraea, although due to continued mowing and past use of the site as pastureland and a golf course the makes it marginal habitat. Earth Tech biologists conducted visual surveys for the Virginia spiraea on July 14, 2003 along the entire project length of Cat Creek. No Virginia spiraea plants were observed and none are recorded at NHP within two miles of the project site. This project will have no effect on this federally threatened species.

Federal Species of Concern (FSC) are not legally protected under the Endangered Species Act and are not subject to any of its provisions, including Section 7, until they are formally proposed or listed as Threatened or Endangered. Organisms that are listed as Endangered (E), Threatened (T), or Special Concern (SC) on the North Carolina Natural Heritage Program list of Rare Plant and Animal Species are afforded state protection under the State Endangered Species Act and the North Carolina Plant Protection and Conservation Act of 1979. However, the level of protection given to state-listed species does not apply to NCDOT activities. **Table 4** contains a complete listing of the federal species of concern in Macon County, their state status, and an indication of habitat presence on the Cat Creek site.

Table 4. Federal Species of Concern in Macon County

Common Name	Scientific Name	State Status	Habitat Present	
Vertebrates				
Appalachian Bewick's wren	Thryomanes bewickii altus	Е	No	
Appalachian cottontail	Sylvilagus transitionalis	SR	Yes	
Appalachian yellow-bellied	Sphyrapicus varius appalachiensis	SC	Yes	
sapsucker				
Bachman's sparrow	Aimophila aestivalis	SC	No	
Cerulean warbler	Dendroica cerulea	SR	No	
Green salamander	Aneides aeneus	Е	No	
Hellbender	Cryptobranchus alleganiensis	SC	No	
Olive darter	Percina squamata	SC	Yes	
Olive-sided flycatcher	Contopus borealis	NL	No	
Rafinesque's big-eared bat	Corynorhinus rafinesquii	T	No	
Seepage salamander	Desmognathus aeneus	SR	Yes	
Sicklefin redhorse	Moxostoma sp.	NL	No	
Southern Appalachian woodrat	Neotoma floridana haematoreia	SC	No	
Southern rock vole	Microtus chrotorrhinus carolinensis	SC	No	
Southern water shrew	Sorex palustris punctulatus	SC	Yes	
Invertebrates				
Carolina skistodiaptomus	Skistodiaptomus carolinensis	SR	No	
Diana fritillary butterfly	Speyeria diana	SR	No	
Lost Nantahala cave spider	Nesticus cooperia	SR	No	
Margarita River skimmer	Macromis margarita	SR **	No	
Tawny cresent butterfly	Phycoides batesii maconensis	SR	No	
Vascular Plants				
Butternut	Juglans cinerea	NL	Yes	
Carolina saxifrage	Saxifraga caroliniana	SR T	No	
Cuthbert's turtlehead	Chelone cuthbertii	SR L*	No	
Divided-leaf ragwort	Senecio millefolium	Т	No	
Fraser's loosestrife	Lysimachia fraseri	Е	Yes	
Glade spurge	Euphorbia purpurea	SR T	No	
Gorge filmy fern	Hymenophyllum tayloriae	NL	No	
Granite dome goldenrod	Solidago simulans	NL	No	
Mountain catchfly	Silene ovata	SR T	No	
Piedmont aster	Aster mirabilis	SR T	No	
Piratebush	Buckleya distichophylla	Ē	No	
Sweet pinesap	Monotropsis odorata	SR_T *	No	
Torrey's mountain mint	Pycnanthemum torrei	NL	No	
West Indian dwarf polypody	Grammitis nimbata	Е	No	
Nonvascular plants				
A liverwort	Cephaloziella obtusilobula	NL ·	No	
A liverwort	Chiloscyphus appalchianus	SR_T	No	
A liverwort	Plagiochila sharpii	SR_T	No	
A liverwort	Plagiochila sullivantii var. sullivantii	NL	No	
A liverwort	Plagiochila virginica var. caroliniana	SR T	No	
A liverwort	Porella japonica var. appalachiana	NL	No	
A liverwort	Porella wataugensis	SR_L	No	
Anderson's melon moss	Brachymenium andersonii	SR L	No	

Not tracked by NHP NL =

T =Threatened

E =

Endangered Special Concern SC =

SR = Significantly Rare

_T = Fewer than 100 populations throughout the species' range

_L = Fewer than 50 populations throughout the species' range

** Historic record; the species was observed over 50 years ago

** Obscure record; the date and/or location of observation is uncertain

Sources: Amoroso, ed. 2002; LeGrand and Hall 2001, FWS North Carolina Ecological Services

Common name follows FWS listing when different from NHP.

FWS/NHP January 2006

No FSC species were observed during the site visit, although suitable habitat is present within the project area for several Federal Species of Concern.

Records from the Natural Heritage Program (NHP) were reviewed on July 23, 2003 to determine the presence of protected species. The records did not list any known populations of federal or state protected species occurring at this site or within 2 miles of the site.

2.6 Cultural Resources

The NCDOT Office of Human Environment conducted a survey for cultural resources and an evaluation of Cat Creek restoration area on the Swartwout and Waldroop Tracts in April 2003. During this evaluation, an environmentally sensitive area was found on the Swartwout Tract. The specifics of the sensitivity of this area are withheld from this public document in order to protect it. For further information on the specific sensitivity of the site, please contact Earth Tech, EEP, or the State Historic Preservation Office. Measures have been taken into consideration to avoid the area including the stream and wetland design and access to the site during construction. Coordination with the State Historic Preservation Office will occur throughout the project to insure that the environmentally sensitive area is protected and not disturbed.

Surveys of the Parker and Preserve Tracts were not conducted because both sites have been extensively modified for development of a golf course.

2.7 Potential Constraints

Lower Swartwout has two lateral constraints. One is the environmentally sensitive area. This area will be avoided by moving the stream to the east away from the area and the existing channel. The sinuosity is designed to match the reference condition and account for these lateral constraints. The second lateral constraint is the existing wetland on the east side of the tract. The proposed stream alignment will not impact the wetlands directly, as the alignment and profile is set so that the existing ground is the new flood plain and the limits of construction do not encroach on the wetland. Priority 1 restoration for the stream is important in the area that is adjacent to the wetland in order to limit excavation and improve groundwater hydrology. The resulting increase in base level elevation by approximately 1' and the reconnection of the floodplain will promote a more stable and consistent hydrology for the existing wetlands.

Preserve Tract. The sinuosity of the stream is designed to match the reference conditions for streams of similar stream and valley type while working around the lateral constraints including the road embankments, bedrock outcrops, and existing wetlands.

A review of the EDR report did not reveal any known occurrences of the presence or release of hazardous materials or wastes on the property. During site activities no evidence, such as distressed vegetation, unusual seeps or odors, or the presence of illegally or improperly disposed chemicals or hazardous wastes were observed. There are no records of occurrences for endangered or threatened species within the project area. There are road right-of-way issues along some sections of the project. On the Waldroop Tract, there is a constraint of keeping the stream where it is near the barn and protecting the barn. On the Waldroop tract all work must be done within the fence line. An easement for a septic drainfield for a nearby residence is located on the Parker Tract, but should not limit access or cause a problem during construction. There were no features on site that would restrict equipment access.

2.7.1 Property Ownership and Boundary

Three of the tracts, Swartwout, Parker, and Preserve, have been purchased by NCDOT for the purposes of restoring the streams and wetlands on the tracts. The Waldroop tract is owned by Jim and Sue Waldroop. The Waldroop property will remain in private ownership and a Conservation Easement will be obtained to protect the restored and enhanced stream. A deed restriction will be placed on the Swartwout Tract with regards to the environmentally sensitive area.

Cat Creek Road (SR 1513) lies to the south and parallels most of the project area. Jack Cabe Road (SR 1520) forms the eastern and southern border of the Swartwout Tract, and Cat Creek Road is to the west. Cat Creek Road divides the Swartwout Tract from the Waldroop Tract and continues to run parallel to Cat Creek forming the southern border of the Waldroop Tract. A fence line, approximately 1,000 feet west of the Waldroop barn, divides the Waldroop Tract from the Parker Tract. Cat Creek Road parallels the Parker Tract until the pond and intersection with Ferguson Road (SR 1507). Ferguson Road splits off of Cat Creek Road and divides the Parker and the Preserve Tracts. Ferguson Road then runs parallel to Cat Creek along the eastern boundary of the Preserve Tract. The project ends at the fence line approximately 1,800 linear feet downstream of the culvert under Ferguson Road.

2.7.2 Site Access

Assess to all four tracts will be from the adjacent state roads and should not provide any constraints on the project. Access and work on the lower section of the Waldroop tract will need to be coordinated with Mr. Waldroop.

2.7.3 Utilities

A power line crosses Cat Creek near the divide between the Waldroop and Parker Tracts. The utility lines will need to be flagged and equipment working in the area will only need to work around the pole and watch the overhanging lines. Any utilities within the road right-of-ways will need to be identified, but should not provide any constraints to construction of the project.

2.7.4 FEMA/ Hydrologic Trespass

According to the Macon County Flood Insurance Rate Map (370150 0006 A July 1, 2001), the floodplain along Cat Creek has not been mapped by the Federal Emergency Management Administration (FEMA). It is likely that portions of the site are within the 100-year floodplain; however, no base flood elevations have been determined.

Cat Creek is not regulated by FEMA, and flooding analysis is not required. However, flooding analysis was performed to insure that the floodplain is not raised significantly along the stream to affect non-project areas. The USGS Method for estimating the magnitude and frequency of floods in rural basins was used to estimate the 2, 5, 10, 25, 50, and 100-year peak discharges for the different drainage areas.

The USGS regression equations from USGS Fact Sheet 007-00 were used to estimate flood discharges (USGS 2002). The latitude and longitude and drainage area for each site are inputs that are required.

HEC-RAS, version 3.0, was used to compute a flooding analysis for the existing and proposed conditions. This analysis is used to ensure that the project will not significantly change existing floodwater limits and that shear stresses are not unreasonable. The results of the HEC-RAS analysis are presented in Section 7.

3.0 PROJECT SITE STREAMS

3.1 Methodology

There are several steps in performing a stream restoration design project. The first step is to survey the existing conditions of the stream and analyze that data. Once the existing conditions are analyzed and the existing stream type is known (*i.e.*, B, C, G, etc.) the design process begins by deciding what type of stream channel needs to be built (*i.e.*, C or E). It is important for the newly constructed channel to handle bankfull flows and remain stable. Once it is known what type of channel will be constructed, a stream reference reach needs to be identified and surveyed. Once the reference reach data is compiled, a stable stream can be designed by altering the pattern, profile, and/or dimension of the existing channel and by using in-stream structures.

3.1.1 Stream Survey

The US Forest Service General Technical Report RM-245, Stream Channel Reference Sites: An Illustrated Guide to Field Technique was used as a guide when taking field measurements. Accurate field measurements are critical to determine the present condition of the existing channel, conditions of the floodplain, and watershed drainage patterns. Topographic mapping of the restoration site was provided by NCDOT. This mapping was used to evaluate present conditions, new channel alignment and grading volumes. Mapping also provided the locations of property pins, fence lines, large trees, vegetation lines, culverts, and roads.

Field surveys of the existing stream channels and surrounding floodplains were conducted July 14 through 17, 2003, and July 31, 2003 to determine the potential for stream restoration. The stream measurements are used in the classification and assessment of the existing stream type and provide data to classify the stream using the Rosgen classification method, Levels I and II (Rosgen 1996). While conducting the field survey, visual observations were made regarding the stream condition, seep locations, disturbed wetland areas, stream crossings, fencing layout, bedrock outcrops, and other unique features of the stream and surrounding floodplain.

During the Cat Creek site visits, seventeen (17) cross-sections were taken using standard differential leveling techniques. These cross-sections were used to gather detail on the present dimensions and condition of the channel. Cross-sectional area was calculated using the bankfull features. Twelve (12) cross-sections of the existing Cat Creek channel were surveyed. In addition to the cross-sections along the main channel, two (2) cross-sections along the existing Unnamed Tributary to Cat Creek (UT1) on the Swartwout Tract were surveyed, and three (3) cross-sections were surveyed on the smaller tributaries on Parker and Preserve. Pebble counts, pavement, and subpavement samples were taken along Cat Creek and UT1. A majority of Cat Creek has been altered in the past; therefore, meander length, beltwidth, and radius of curvature were measured in the few areas with sinuosity. An estimation of the bank erosion potential was conducted at the seventeen cross-sections using the Bank Erodibility Hazard Index (BEHI) developed by Rosgen (1996). Field survey data is included as **Appendix 2**, photos of the sites are included as **Appendix 3** and a Morphology Table presenting all the measured and design parameters is included as **Appendix 4**.

3.1.2 Stream Reference Reach Search

The reference reach is a stable stream segment used to develop dimensionless ratios for natural channel design. A reference reach that has the dimensions, pattern, and profile of the desired stream type to be designed should be found within the same physiographic region and if possible within the same River Basin. A stable reference reach has the following: stable banks and bed material; stable bedform sequence; stable pattern; native vegetation along the buffer; similar valley type; and similar land use within the watershed. Potential reference reaches were first identified by reviewing USGS topographic maps for Macon County and the surrounding counties within the Little Tennessee River Basin. Sites were then visited and viewed from the road and other points of public access. The landowners, for the stream reaches that appeared to be suitable were contacted and permission was obtained to evaluate the reaches in greater detail.

3.1.3 Stream Design

The stream restoration design is based upon the dimensionless ratios taken from measurements of the reference reachs in relation to bankfull stage. These ratios are used to derive the proper pattern, profile, and dimension for the channel to ensure sediment is transported effectively and the channel is stable. For this project there are several different reaches each with different problems but with similar characteristics. The reaches were divided based upon the characteristics and location. Overall the site was divided into 9 reaches: Swartwout Upper, Swartwout UT, Swartwout Lower, Waldroop Upper, Waldroop Lower, Parker, and Preserve. The stream restoration designs for each reach were based upon the existing site characteristics and needs for restoration and/or enhancement. The designs used dimensionless ratios from the reference reaches.

3.2 Swartwout Tract

The land uses within the watershed for Swartwout Tract include farms, forested land, secondary roads, and scattered residences. The watershed at the end of the Swartwout Tract covers 2.1 square miles (**Figure 2**).

3.2.1 Streams

Cat Creek flows through the Swartwout Tract for approximately 1,632 feet (**Figure 4**). A geomorphic survey was performed on the Swartwout tract in order to evaluate its current condition and determine a classification for the reach. The longitudinal survey for classification was 180 feet long, which of a sufficient length to identify the poor bedform of the entire reach. The reach was broken into an upper and a lower classification section due to changes in valley type, slope, geometry and cover type. **Table 5** summarizes the existing conditions data found in **Appendix 2** for Cat Creek on the Swartwout Tract. **Appendix 3** contains photographs of the Swartwout Tract.

Table 5. Swartwout Tract Existing Stream Conditions Summary

Tract	Bankfull Width (feet)	Bankfull Cross- Sectional Area	ER	Width to Depth Ratio	Avg. Water Surface Slope	Sinuosity	BHR	ВЕНІ	Stream Type
Upper Reach	17.5	17.1	6.9	17.9	0.015	1.01	1.53	Very High	C4
Lower Reach	19.9	16.7	1.6	23.7	0.014	1.01	1.32	High	NA
UT1 Riffle	16	20.2	3.4	12.7	0.022	1.06	1.41	Very High	C4b
Mt. Regional Curve	20.4 18.0(UT)	24.4 19.5(UT)							

^{*}Additional Survey Data located in Appendix 2

The cross-sectional areas of Cat Creek, the Unnamed Tributary (UT 1), and the reference reach sites used for this report are plotted on the Mountain Regional Curve of North Carolina developed by the North Carolina State University (NCSU) Water Quality Group, 2000 (**Figure 5**).

Cat Creek Upper Swartwout

For the first 300 feet, the centerline of Cat Creek is the property line for the boundary with the landowner to the east. This reach borders a mature hardwood forest to the east and to the west is an old pasture. This portion of the reach runs through a steep, confining valley where the channel has apparently been moved against the valley wall, though this is likely to have occurred decades if not a century ago. The modification as well as other anthropogenic influences has caused the channel to over widen and incise. This portion of the reach is relatively stable, though still actively widening in several locations. The proposed enhancement/stabilization efforts will not cause any deforestation of this reach.

Cat Creek meanders tightly around a heavily wooded ridge and then makes a drastic bend to the left. The lack of channel bedform, the over-widening, and the lack of riparian vegetation on the outer bank have caused severe erosion on the outside bends near the fence line and an existing access road. Banks here are undercut and mass wasting is causing a significant contribution of sediment to Cat Creek. This section of more than 100 feet of bank has continually eroded during the few years that this project has been in planning. The location of the bank stabilization efforts and proximity to the property boundary fence are shown on **Figure 4**. The fence is beside an access road that belongs to the adjacent property owner. From this meander bend the channel flows over bedrock through a wooded section. The channel remains incised and with short stretches of bank wasting occurring down to an old ford. Here the channel slope changes and property constraints are eliminated allowing for full channel restoration.

^{*}Location of Cross-Sections shown on Figure 4.

Within this reach Cat Creek classifies as a C4 channel under the Rosgen classification method. It has a bankfull width of 17.5 feet. A Bank Height Ratio of 1.53 is indicative of incision. Bank wasting indicated the successional stage of this channel is in a current trend of changing from a "C" to a "G" or "F" as incision or widening continues in future flood events.

Cat Creek Lower Swartwout

The lower reach of Cat Creek flows through a former pasture. The pasture was active up until the time the property was purchased by the NCDOT in 2003 as a stream and wetland restoration site. The stream has been moved from its natural alignment and built as a straight "V-ditch" at some unknown date in the past. Spoil piles line both sides of the channel creating an incised channel. Entrenchment ratios are a poor indicator of channel stability in this case, due the fact that the channel is now a straight reach with no access to the floodplain during relatively large flood events of up to approximately the 5-10 year event. The channel modification has created a channel with little to no bedform and very poor riffle - pool sequencing to provide biological function and channel stability. This reach has intermittent bank wasting along its length. Many channels that are re-aligned and altered by man would have developed a somewhat stable pattern after decades have past. However, in this reach, the confinement by the spoil berms has disabled the ability of the stream to develop any meander pattern or bedform and, therefore, its ability to possess the dimension pattern, profile and biological function of a natural channel. The proposed re-alignment and raising of the channel grade will re-connect this channel to the wide floodplain of the remnant channel and improve the stability and function of Cat Creek.

The channelized reach of Cat Creek does not lend itself to classification under the Rosgen classification system. It has a bankfull width of 19.9 feet. An entrenchment ratio of 1.32 indicates that it is entrenched. Remnants of a spoil bank along the east side and a sinuosity of 1.01 provide evidence of past channelization and disturbance. The average water surface slope is almost equal the valley slope, which in itself indicates the lack of pools and tendency of instability of the reach. Just below the confluence of UT1 the channel has been pushed up against the base of Jack Cabe Road.

UT to Cat Creek (UT1)

This small stream flows onto the site through a culvert beneath Jack Cabe Road (**Figure 4**). The UT runs parallel to Jack Cabe Road before joining Cat Creek just upstream of the bridge on Cat Creek Road. The stream has been channelized from the culvert to its confluence with Cat Creek with a spoil pile on the right bank preventing it from reaching its floodplain on bankfull and larger events. Incision and the confinement of the spoil pile on the right bank and Jack Cabe Road on the left bank has caused bank wasting, bank scour, bed scour and general instability along the entirety of the reach. The reach has poor bedform with few pools for habitat and energy dissipation of higher flow events. Sinuosity of the altered channel is 1.06, also indicating its channelization. The channel is overly wide in some areas and a few side bars along the right bank are present, indicating aggradation. The presence of rip-rap stone in the channel indicated attempts to stabilize sections of the reach in the past. A review of the existing topography indicates that the at one time the stream was likely located to the east where it flowed through a wetland area and into Cat Creek. It is probable that the channel was altered in order to move it to

the edge of the pasture, rather than running through the middle of it. The proposed re-alignment will; reconnect the channel to the floodplain, help reduce near bank stress, provide for a stable channel with greatly reduced sediment contributions to Cat Creek, provide a stable bedform and natural sinuosity for this valley type, and improve the hydrology of the nearby existing wetlands. The proposed channel revision will minimize construction impacts of the adjacent wetlands.

The channelized reach of the UT does not lend itself to classification under the Rosgen classification system. It has a bankfull width of 16.03 feet. An entrenchment ratio of 3.4 indicates that it is moderately entrenched. Remnants of a spoil bank along the right bank and a sinuosity of 1.06 provide evidence of past channelization and alteration. A bank height ratio of 1.41 demonstrates the incision of the altered channel and offers an explanation of the relative instability of the channel. There is no evidence of channel access to the remnant floodplain on the right bank.

3.2.2 Soils and Hydrology

The floodplain along Cat Creek is divided into an upper field and a lower field by a natural narrowing of the floodplain. According to the Macon County Soil Survey, the floodplain adjacent to Cat Creek is mapped as Reddies (**Figure 3**). See Section 5.0 for details on wetland soils and hydrology.

3.2.3 Vegetation

Upper Swartwout

Along the upper section of Cat Creek, a mature hardwood forest is present to the east and to the west is a pasture. Trees, shrubs, and herbaceous plants that are along the left bank shade a majority of the stream in the upper reach. Tree species include red maple (*Acer rubrum*), tulip poplar (*Liriodendron tulipifera*), spicebush (*Lindera benzoin*), and flowering dogwood (*Cornus florida*). Herbaceous vegetation includes switchgrass (*Panicum virgatum*), wingstem (*Verbesina alternifolia*), soft rush (*Juncus effusus*), sedges (*Carex* sp.), jewelweed (*Impatiens capensis*), and goldenrod (*Solidago* sp.). The west side of the channel is similar to the lower pasture portion of the tract described in detail below.

Lower Swartwout

In the lower section, Cat Creek flows through a pasture. The channel is fenced off and heavily vegetated with herbaceous vegetation. The pasture has been mowed annually and consists of grasses and other herbaceous vegetation. The dominant grass is pasture fescue (Festuca arundinaceum). Other herbaceous vegetation includes sedges, soft rush, goldenrod (Solidago sp.), blackberry vines (Rubus sp.), and Joe-pye weed (Eupatorium maculatum). Because of infrequent mowing along the channel, scattered woody vegetation is present and includes black willow (Salix nigra), tag alder (Alnus serrulata), and elderberry (Sambucus canadensis).

UT to Cat Creek (UT1)

The vegetation along this stream consists of scattered trees and shrubs with a dense herbaceous layer. The trees are red maple and the dominant shrubs are tag alder and elderberry. The herbaceous vegetation is variable and includes jewelweed, wingstem, blackberry, New York ironweed (*Vernonia noveboracensis*), purplestem aster (*Aster puniceum*), goldenrod, deertongue (*Panicum clandestinum*), and Japanese stilt grass (*Microstegium vimineum*).

Wetlands

The wetland area adjacent to UT1 is dominated by herbaceous vegetation. This vegetation includes blue aster, goldenrod, soft rush, sedges, and ironweed.

3.3 Waldroop Tract

The Waldroop Tract is an active cattle and horse farm owned by Sue and Jim Waldroop (Figure 6). Cat Creek flows through the property for approximately 2,160 feet. The tract has been divided into an upper and lower section based upon the proposed design. Photographs of the site are located in Appendix 3.

Data obtained from field surveys were used to compute the morphological characteristics of the channel. **Table 6** summarizes the existing conditions data found in **Appendix 2**.

Table 6. Waldroop Tract Existing Stream Conditions Summary

Tract	Bankfull Width (feet)	Bankfull Cross- Sectional Area	ER	Width to Depth Ratio	Ave. Water Surface Slope	Sinuosity	BHR	ВЕНІ
Waldroop Lower	22.9	39.1	3	13.4	0.0077	1.01	1.37	Low
Mt. Regional Curve	27.1	41.4						

^{*} Additional Survey Data located in **Appendix 2** Locations of Cross-Sections on **Figure6**

3.3.1 Stream

The upper section is fairly stable with a few eroded banks and a narrow buffer. The lower section is unstable due to the highly eroding banks, deep pools, and lack of a good riffle-pool sequence. This section has a narrow mature buffer that is being eroded away and therefore in need of stabilization. The watershed at the end of the Waldroop Tract totals 2.5 square miles.

Upper Waldroop

The upstream portion of Cat Creek on the Waldroop Tract flows alongside Cat Creek Road (**Figure 6**). The upper reach includes approximately 1,463 linear feet. One small road ditch enters the property at the beginning from the north along Cat Creek Road. The creek flows through an equipment/livestock crossing and continues through a narrow buffer. In this section

the stream is fairly stable. However, just below the equipment crossing, there is a boulder outcrop and below the boulder, a large scour pool has formed. A small tributary enters from the left just upstream of a wooden equipment access bridge. Cat Creek then flows under the bridge, which is just upstream of the barn.

Lower Waldroop

Adjacent to and just below the barn is a wide cattle crossing. The crossing is used regularly to move cows from the pasture on the north side of the stream to the "bull pasture" on the south side of the creek. A watering access point for the bull pasture is also found in this area. The cattle have caused erosion and caved in the banks at the crossing. However, rock and other materials have been placed in the crossing, and it appears to be relatively stable.

Below the barn, the creek flows through a narrow (5 feet on both sides) but mature buffer between two fence lines, roughly 35 feet in width. This section of the stream has severe streambank erosion and is overly wide in multiple locations. This has caused aggradation of fines in the channel bed and bar formation which is creating stress on the banks along aggraded sections of the channel. The eroding banks are also causing loss of large trees.

Although the channel is entrenched and has large bank height ratios, the flood-prone area extends into the bull pasture. Due to past channel modifications the stream does not lend itself to classification under the Rosgen classification system. The banks are eroding and scouring, the pools are infrequent, and riffles are shallow and wide with aggradation.

3.3.2 Soils

According to the Macon County Soil Survey, soils adjacent to Cat Creek are mapped as Reddies fine sandy loam. Soil on the Waldroop Tract was not evaluated during field investigations.

3.3.3 Vegetation

Waldroop Upper Section

The vegetation along this section consists of a narrow tree and shrub buffer with pasture on both sides. The woody buffer is approximately 25 feet in total width. The vegetation is maintained in a shorter, shrubby state by the landowner in this area. The woody portion of the buffer consists of mostly tag alder with a few scattered black willows. Herbaceous vegetation consists of blackberry, rushes, wingstem, and deertongue grass.

Waldroop Middle and Lower Section

The vegetation along this reach is also a narrow buffer of trees and shrubs with pasture on both sides. The buffer consists of much larger and older trees and shrubs with maintenance limited to keeping vegetation away from the fence. Several of the larger trees are being undercut by bank erosion. Species include black walnut (*Juglans nigra*), red maple, privet (*Ligustrum sinense*), and scattered black cherry (*Prunus serotina*). Herbaceous vegetation consists of blackberry,

rushes, wingstem, and deertongue grass. The buffer in this section is relatively dense throughout. The adjoining pastures are regularly maintained through mowing and grazing of livestock. Species present include fescues and other pasture grasses.

3.4 Parker Tract

The Parker Tract begins downstream of the Waldroop fence line. This tract was once part of a golf course. The channel has been straightened and the floodplain altered by fill material and drainage modifications to allow for the construction of the golf course. Although the golf course has not been active for a number of years, the tract is still open with the locations of greens and tee boxes still visible. The tract is owned by the NCDOT who purchased it in 2002 for their stream and wetland restoration program. Photographs of the site are located in **Appendix 3**.

Cat Creek flows for approximately 1803 feet through the center of the Parker Tract. Two small unnamed tributaries, UT 2 and UT 3 enter the site from the west.

A geomorphic survey was performed on the Swartwout tract in order to evaluate its current condition and determine a classification for the reach. **Table 7** summarizes the existing conditions data found in **Appendix 2** for Cat Creek on the Parker Tract.

Table 7. Parker Tract Existing Stream Conditions Summary

Tract	Bankfull Width (feet)	Bankfull Cross- Sectional Area	ER	Width to Depth Ratio	Avg. Water Surface Slope	Sinuosity	BHR	ВЕНІ
Parker	18.5	40.3	5.7	8.5	0.0058	1.06	1.38	Low
UT2	8.2	12.9	13.9	5.2	0.013	1	1.33	Low
UT3	6.7	6.9	22.4	6.5	0.013	1	1.5	NA
Mt. Regional	27.13	41.4						
Curve .	14.7 (UT2)	13.5 (UT2)						
	11.2 (UT3)	8.2 (UT3)				San Francisco		1

^{*}Additional Survey Data located in **Appendix 2** Locations of Cross-Sections on **Figure 7**

3.4.1 Stream

After leaving the Waldroop Tract, Cat Creek flows under an old wooden bridge. From the wooden bridge, the stream turns slightly to the southwest and runs parallel to Cat Creek Road (Figure 7). There is bedrock present for approximately 400 feet through this section. The stream flows through the abandoned golf course field and there are no trees along the banks. This reach is extremely straight and has been channelized as evident from spoiled material at the top of the stream banks and from personal accounts from adjacent landowners. The bed material through this section is very unconsolidated, consisting of loose gravel and a significant percentage of fine silt. The lack of consolidation is evidence of the present condition of the actively eroding and aggrading channel. The incision, indicated by a high bank height ratio of 1.38, is causing erosion in multiple locations along the length of the reach. Mid channel bar formation exists throughout the reach, again evidence of the lack of sediment transport capacity of the channel through this

reach. Delta bars exists where the 2 tributaries join this channel which is also an indicator of a lack of sediment carrying capacity and the resulting in-channel stresses that cause bank erosion.

The entrenchment ratio of 5.6 is misleading, as this much floodplain is not available until the flow is high enough to reach approximately 1.7 of the max depth. Until the channel reaches this relatively high flow (approximately greater than the 5-year storm event) there is no useable floodplain. At 2X max depth, the channel has a moderate floodplain width, and thus the misleading nature of the entrenchment ratio. Entrenchment ratio is intended to indicate the width of the floodplain available for floodplain flow (lateral confinement) of the channel and is more useful for stream and valley type determinations than channel stability. The vertical confinement, as indicated by bank height ratio, is a much more consistent indicator of channel stability. This is evident by the highly unstable nature of this reach, even though it has an adequate entrenchment ratio. Approximately 500 feet upstream of where Cat Creek crosses under Ferguson Road, the main stream slightly increases its sinuosity which results in several severely eroded outside meander bends with overhanging, under-cutting banks.

A small tributary (UT2) enters at the midpoint of the straightened and channelized section of Cat Creek from the left. This tributary once had a more sinuous pattern but has been straightened and shortened. The USGS mapping shows this stream flowing into Cat Creek near Ferguson Road, further downstream then where it now enters. Though the fill material of the old golf course covered much of the relic channel, low points in the valley verify the alignment indicated by the USGS topographic mapping. There are two ponds just upstream on UT2. This channel is similar to Cat Creek on this tract in that it is very incised, but has a useable floodplain at 2X max depth, thus having a misleading entrenchment ratio. Again, the channel has to experience a substantially larger than bankfull (approximately 1.5-year storm event) to reach any floodplain. In most flood events, the channel contains the entire flow without reaching a floodplain. The low straight reach has a steep slope that is equal to the valley slope. An alluvial channel is not likely to reach stability without having a channel slope that is less than valley slope. The current slope condition is predictably causing down cutting of the channel bed. UT-2 is highly unstable, lacks bedform, has been straightened (sinuosity of 1.0), and has mass wasting banks intermittently along its length until it joins Cat Creek.

Another tributary, UT3, enters Cat Creek from Ferguson Road downstream of UT2. This small tributary is also very straight from the alteration of the channel during construction of the golf course. This channel has the same problems as UT-2; no sinuosity (1.0), steep channel that is equal to valley slope, incision, and no riffle pools sequence for energy dissipation. The bank height ratio of 1.53 indicates a high degree of incision. As would be expected with this incision, the channel has multiple sections of severe erosion and mass wasting banks.

Just before Cat Creek crosses under Ferguson Road, a ditch enters from the right. The ditch runs parallel to the Parker/Waldroop property line and appears to have been installed to drain groundwater flow and spring seeps at the base of the hillslope along the west side of the valley. The watershed at the end of the Parker Tract is 3.3 square miles.

Within the Parker Tract, due to the past channel modifications, Cat Creek and both unnamed tributaries do not readily lend themselves to classification under the Rosgen classification system.

3.4.2 Soils and Existing Wetland Conditions

According to the Macon County Soil Survey the floodplain adjacent to this section of Cat Creek is mapped as Nikwasi and Reddies soils (**Figure 3**). However, the natural soils have been disturbed and/or buried. Based on numerous soil borings and soil pits it is estimated that some areas have a surface layer up to two feet thick of fill/disturbed material overlaying the natural hydric soil. Beneath the fill/disturbed material is a hydric soil having dark gray and gray colors. The fill appears to be thickest near the channel and old tee/green formations. Typical soil profiles are given in **Appendix 5**.

See Section 5.0 for details on wetland soils and hydrology on this tract.

3.4.3 Vegetation

The Parker Tract has been significantly altered because of its past use as a golf course. Although the site has not been maintained as a golf course, it is mowed regularly, and herbaceous vegetation dominates. The banks along Cat Creek and its tributary consist of annuals and perennials with scattered shrubs and small tree seedlings. The surrounding field supports a similar vegetative composition, although the field was mowed prior to field activities. Woody vegetation consists of elderberry, black willow, black cherry, and tag alder. Herbaceous species include Canada goldenrod (*Solidago canadensis*), Joe-pye-weed, ironweed, blackberry, soft rush, annual ragweed (*Ambrosia artemisiifolia*), switchgrass, and deertongue. According to an adjacent landowner, this floodplain was once part of a large swampy area 30 years ago.

3.5 Preserve Tract

The Preserve Tract is similar to the Parker Tract in that it has been significantly altered from past use as a golf course. The watershed at the end of the Preserve Tract is 3.6 square miles (**Figure 2**). The preserve Tract was purchased by NCDOT in 2004 as a stream and wetland restoration site.

3.5.1 Stream

Cat Creek passes through a culvert at Ferguson Road and flows through the middle of the Preserve Tract. Although once a part of the golf course, Cat Creek through this tract has more sinuosity, terraces (benches) are present, and the bed material is stable compared to the Parker Tract. There are several severely eroded meanders near Ferguson Road. Downstream, the channel appears to be returning to a stable state, though lacking riffle-pool sequencing from past channelization. Access to a small floodplain and wetland has encouraged stability along the majority of this reach. The proposed enhancement will involve minimal disturbance of the channel to install a few structures to restore pools in the channel and provide for improved biological function. What little instability that is present in the lower portion of this reach is

apparently due to a lack of good bedform and a need for energy dissipation at intervals of approximately 150 feet. Bank stabilization is proposed for the upper portion of the reach. There are also several areas of bedrock near Ferguson Road. **Figure 8** shows the locations of cross-sections surveyed and existing conditions at the Preserve Tract.

Several small streams or tributaries flow into Cat Creek on the Preserve Tract. The first (UT 4) is a small tributary that enters from the right (east). Although very small, this tributary is perennial. This tributary is actively incising and widening due to a short and steep average slope to its confluence with Cat Creek. This channel was apparently re-aligned and channelized during the construction of the golf course at the site. The tributary has perpendicular alignment to Cat Creek, and it is assumed that the reminant channel would have run at a more natural angle to converge with Cat Creek. The proposed restoration of the tributary will re-align the tributary to a more natural confluence with Cat Creek, restore dimension, bedform and pattern, and greatly improve sediment contributions from the actively eroding tributary.

Near the midpoint of the site there are two small drainage systems that enter from the left (west). Both of these appear to be fed by small springs or seeps that originate on the Preserve Tract and have very low rates of flow. A fourth small tributary flows through a culvert beneath Ferguson Road and through a second culvert into an old pond bed, before flowing into Cat Creek. None of these small tributaries are shown on the USGS mapping.

Data from field surveys were used to compute the morphological characteristics of Cat Creek. This reach classifies as a C type stream. The cross-sectional areas for Cat Creek on this reach plot along the trend line for the Mountain Regional Curve (Figure 5). Table 8 summarizes the survey data and the cross-section locations are shown on Figure 8.

Table 8. Preserve Tract Existing Stream Conditions Summary

Tract	Bankfull Width (feet)	Bankfull Cross- Sectional Area	ER	Width to Depth Ratio	Ave. Water Surface Slope	Sinuosity	BHR	ВЕНІ
Preserve	33	50.2	2.2	21.7	00072	1.13	1.52	Low to Very High
UT4	13.2	6.2	7.6	27.9	0.045	1.05	1.3	N/A
Mt. Regional Curve	30.60 9.9 (UT4)	51.8 6.5 (UT4)						

^{*} Additional Survey Data located in **Appendix 2** Locations of Cross-Sections on **Figure 8**

3.5.2 Soils and Existing Wetland Conditions

The eastern floodplain on the Preserve Tract has extensive fill from the construction of the golf course. According to the Macon County Soil Survey, the floodplain adjacent to this section of Cat Creek is mapped as Udorthents-Urban Land complex (**Figure 3**). Soil borings revealed that up to 4 feet of fill material has been added at some locations. Four shallow pits were excavated to help determine the depth of fill material and nature of the underlying soil. Depth of fill is variable and beneath the fill is a dark gray or light gray hydric soil. Much of the fill material is

rocky which makes determining characteristics of the underlying soil difficult or impossible using hand augers.

See Section 5.0 for details on wetland soils and hydrology on this tract.

3.5.3 Vegetation

The Preserve Tract is dominated by herbaceous vegetation that is maintained by regular mowing. The channel banks are mowed to the edge of the stream, except along the wetlands. The floodplain supports a diverse vegetation of annual and perennials with scattered shrubs and trees. Trees are scattered along the stream and include sycamore (*Platanus occidentalis*), tulip poplar, and black walnut. Shrubs include elderberry, black willow, black cherry, and tag alder. Herbaceous species include Canada goldenrod, Joe-pye-weed, ironweed, blackberry, soft rush, annual ragweed, switchgrass, and deertongue.

4.0 REFERENCE STREAMS

Earth Tech conducted any extensive search for suitable stream and wetland reference sites within the Little Tennessee River basin. Several potential reference reaches were identified. However, upon additional field evaluation of the reaches it was determined that they were not suitable. Because of the long history of utilizing the larger floodplains for agriculture and cattle, few undisturbed, stable streams exist in the Little Tennessee River watershed. Two reference reaches in other watersheds within Mountain Physiographic Province were identified were determined to be suitable based upon similarities in valley type. This reference data was used to develop design parameters for Cat Creek as well as the tributaries.

4.1 Bent Creek

Bent Creek, a fourth order stream, is located in the Bent Creek Experimental Forest south of Asheville, North Carolina in the French Broad watershed (Figure 9). The stream is located in a wide alluvial valley within a relatively mature hardwood forest. While logging from the early twentieth-century caused most of the streams within the Bent Creek watershed to become somewhat entrenched, the streams have since stabilized through vegetative-control. Because of the similarity of the Bent Creek valley type, width, drainage area (3.7 square miles), and elevation to the lower reach of Cat Creek, Bent Creek was determined to be a suitable reference reach for this project. Morphological parameters for this reference reach are presented in Appendix 4.

4.2 Unnamed Tributary to Meadow Fork

UT to Meadow Fork, a third order stream, is located adjacent to the Blue Ridge Parkway in Allegheny County, North Carolina and is within the New River Watershed (Figure 10). The surveyed reach is located in a decades-old fallow pasture and has been relieved of active grazing for four years prior to surveying. Relic benches indicate the original channel was an E channel, which then downcut and widened with grazing pressure and vegetation removal years ago. A stable C channel appears to have existed for several decades and then cessation of grazing allowed the channel to transition to an E in the years prior to being surveyed. The drainage area (1.3 square miles), valley type and valley width of the UT to Meadow Fork is similar to that of the upper reach of Cat Creek and the tributaries to Cat Creek, therefore it was determined to be a suitable reference reach for this project. Morphological parameters for this reference reach are presented in Appendix 4.

5.0 PROJECT SITE WETLANDS

5.1 Methodology

Wetland restoration is based upon existing site characteristics, including soil properties, topography, and hydrology. A detailed study of these site characteristics was performed to describe the existing conditions and to develop restoration goals that guide the wetland restoration design.

5.1.1 Soil Evaluation

A detailed investigation of the soils adjacent to Cat Creek was conducted July 28-31, 2003, and October 1-3, 2003. The soil investigation was accomplished through a series of hand auger borings. Features evaluated included horizon depth, moist colors, textures, and other notable features such as mottles and depth to free water. Presence and depth of potential fill materials were also recorded. On December 2, 2003, a number of soil pits were dug to determine buried drainage features, such as drainage pipes, and to verify hand auger borings.

5.1.2 Hydrologic Evaluation

Fourteen groundwater-monitoring gauges were installed on the Parker and Swartwout Tracts to study groundwater conditions and to determine jurisdictional wetland hydrology. A rain gauge is also located at the Swartwout Tract. The gauges were installed and maintained by Fish and Wildlife Associates, and the data were provided to Earth Tech. Recordings for both the groundwater-monitoring gauges and the rain gauge were taken from September 21, 2002 through December 15, 2003. Data for the 2003 growing season, April 30 to October 12, were analyzed (165 days). Areas that are seasonally inundated and/or saturated to the surface for more than 12.5% of the growing season are jurisdictional wetlands. Areas saturated to the surface between 5% (8 days) and 12.5% (21 days) of the growing season may be jurisdictional wetlands if soils and vegetation meet jurisdictional criteria.

5.1.3 Wetland Delineation

Hydric soil areas were identified and delineated in accordance with soil criteria established in the U.S. Army Corps of Engineers Wetlands Delineation Manual (Environmental Laboratory, 1987). The hydric soil boundaries were flagged and surveyed using GPS surveys techniques. A site visit with Steve Lund, with the US Army Corps of Engineers (USACE) was performed on February 24, 2004. During the site visit Mr. Lund confirmed wetland areas and boundaries.

5.2 Swartwout Tract

Upper Swartwout - The floodplain in the upper field is nearly level with the stream flowing along the eastern edge. Hand auger borings within this field indicate that hydric soils are present (**Figure 11**). The hydric soils form a triangle with a shallow drainage swale bordering the east side. The soils narrow to a point where the swale empties into a ditch that flows into Cat Creek. A buried concrete culvert also empties into this ditch. The culvert protects the end of a perforated

drainpipe that drains the wetland area. A soil pit dug in this area revealed that the remaining soils in this field have a non-hydric, sandy, surface layer overlaying a gray hydric layer 19 to 24 inches below the ground surface. This non-hydric surface layer is likely fill material brought in to level the site for a small riding arena.

Two groundwater gauges are located in this upper field (**Figure 11**). Hydrographs for these gauges can be found in **Appendix 6**. Data analysis shows that jurisdictional hydrology may be met for Gauge 10 installed within an area of hydric soils. Groundwater was within 12 inches of the surface for only one 8-day period (5 percent) during the growing season, May 6 to 13. This meets the minimum hydrologic criteria for a wetland despite the drainage modifications. The other gauge (Gauge 9), within a filled area, does not show wetland hydrology during the growing season. Neither of these areas were determined to be jurisdictional wetlands by the USACE.

Lower Swartwout - The lower field is bisected by Cat Creek. Along this reach a small berm is present along the banks of Cat Creek, which helps reduce over bank flooding. To the west, a slightly higher terrace grades into a shallow swale near Cat Creek Road. Hydric soils form a narrow linear shaped unit along the swale. According to the previous landowner a drainpipe was installed in the swale several years ago to drain a spring or seepage located near the head of this swale. This drainpipe was located and found to drain into a ditch along Cat Creek Road. Three groundwater gauges are located in this swale. Data analysis (Appendix 6) shows that jurisdictional hydrology is met for Gauges 2 and 3. Groundwater was within 12 inches of the surface for all of the growing season for Gauge 2. This indicates this area meets the criteria for wetlands despite the drainage modifications. The remaining gauge (Gauge 1) does not show wetland hydrology at any time during the growing season. This area was determined not to be a jurisdictional wetland by the USACE.

To the east of Cat Creek the floodplain expands into a wide triangle that connects to UT1. According to the previous landowner, drain tiles were also installed in this field, one along the base of the slope that drains into UT1 and a second more centrally located (**Figure 11**). Soil pits were used to verify the location of these drainpipes. The soils in this area show mottling in the surface layer, indicating extended saturation, but lack the extensive low chroma colors found in hydric soil. An underling layer of gray soil is found, ranging in depth from 12 inches near the drainpipes to 20 inches or deeper. Typical soil profiles are provided in **Appendix 5**.

Five groundwater gauges are located in the eastern portion of the lower field. Hydrographs (**Appendix 6**) show that jurisdictional hydrology is met for all gauges. All gauges had wetland hydrology for at least 19 percent of the growing season (31 days). Groundwater was within 12 inches of the surface throughout the growing season for Gauge 6. This indicates this area meets the criteria for jurisdictional wetlands despite the drainage modifications. Some, but not all of this area was determined to be a jurisdictional wetland by the USACE.

Rainfall measurements were obtained from an on-site rain gauge. Precipitation during the 2003 growing period ranged from normal to below normal. Precipitation data are provided in **Appendix 6**. Recorded onsite precipitation events show a good correlation to groundwater data.

In the corner of the floodplain along UT1 and above the drainpipe, the soils are hydric and were delineated as Jurisdictional Wetlands (**Figure 11**). This wetland area is located between the toe slope and a berm/spoil pile along the UT. This triangular shaped wetland starts as a narrow point near the culvert at Jack Cabe Road and expands into the floodplain. Shallow standing water was observed in portions of the wetland. This wetland appears to originate as seepage along the toe slope.

5.3 Parker Tract

The wide floodplain within this tract has been extensively altered during construction of the golf course. According to the general contractor who built the golf course, soil additions and contour grading were used to increase drainage of the site. Several shallow surface swales are found that drain surface water toward the stream. The contractor does not remember extensive fill in this area and indicated the use of drainpipes was limited. On the north side of the floodplain along the toe slope, a ditch and berm were constructed to drain the seepage water away from the fairway. This ditch flows along the edge of the floodplain and the old fairway next to the fence line along the Waldroop property. The ditch empties into Cat Creek just above Ferguson Road. This ditch ranges from about 1 foot deep and 5 feet wide to 2 feet deep and 10 feet wide. Near Cat Creek the channel is deeper due to a head cut. In the southeast corner of this tract soil pits verified that a drainpipe is present near the road embankment to Cat Creek.

Three hydric soil areas were delineated within the floodplain on the north side of Cat Creek (**Figure 12**). The first is a small, depressional area near the edge of the old fairway. The fill/disturbed soil is absent near the center of the depression and increases in thickness from the center till the hydric indicators are greater than 12 inches. A low berm separates this area from the ditch. The second, slightly larger area of hydric soils is also separated from the ditch by the low berm. The third area is the most extensive, covering approximately one-third of the length of the floodplain, ending near an old tee near Ferguson Road. Most of this area is separated from the ditch by the low berm. Toward the channel these soils grade into a deeper surface layer and borings indicate these soils are disturbed. Soil indicators and depth of fill materials vary.

Four groundwater gauges are located within this tract (**Appendix 6**). The hydrographs show that jurisdictional hydrology is met for all four gauges. All gauges had wetland hydrology for at least 17 percent of the growing season (28 days). Ponding is indicated on the graphs and was observed when data were collected. This area meets the hydrology criteria for jurisdictional wetlands. Three areas that were determined to be jurisdictional wetlands are shown on **Figure 12**.

Although hydrologic conditions meeting jurisdictional criteria are present, it is likely that these wet areas were historically much wetter than they are today. This area was reportedly once part of swamp forest system that occurred along Cat Creek. These systems typically contain low swales and areas of ponded water for extended periods.

5.4 Preserve Tract

Two wetland areas are present on the Preserve Tract (Figure 13). The first is a narrow linear wetland adjacent to the channel on the east side. This wetland is situated on a low floodplain bench. It appears that this wetland once extended further to the east. Soils to the east of this wetland have a surface layer of fill 16 to 24 inches thick. Soils beneath this fill are hydric, having a dark gray layer over light gray. The hydric soil layer is silty clay loam over silt loam with sand lenses present (Appendix 5).

The second wetland is located in an old pond bed. Soils in the old pond have a thin sandy loam layer that is dark gray with organic matter. This pond most likely was a shallow excavation that was surrounded by the fill/disturbed soils found across the site. Both areas were determined to be jurisdictional wetlands by the USACE.

6.0 REFERENCE WETLANDS

A search for a reference wetland was conducted using NWI maps, USGS Topographic Quadrant maps, windshield surveys, and personal communications. Site suitability was determined based on floodplain topography, source of hydrologic input, site soils, and the vegetative community present.

The Cartoogechaye Creek wetland is located southwest of Franklin and west of Old Murphy Road along Cartoogechaye Creek (Figure 14). This wetland is located along a steep toe slope at the edge of the floodplain. The hydrology is seepage with minimal input from over bank flooding and upland runoff. The seepage flows for approximately 500 feet, with a portion adjacent to a maintained residential area. A shallow network of swales with variable depth parallels the slope and collects flows. The network flows parallel to the slope, converging into a deeper wide swale. A small ditch connects the deeper portion of the swale to Cartoogechaye Creek. The ditch did not have flow or show evidence of recent flows, but appears to allow overbank flows to drain rapidly after floodwaters recede.

The vegetative community is forested except near the maintained area. Trees include red maple, river birch and sweet gum. Shrubs include tag alder, and elderberry. Herbaceous vegetation includes sedges, rushes with scattered annuals and perennials. The maintained area is similar to pasture land.

7.0 PROJECT SITE RESTORATION PLAN

Stream and wetland restoration and enhancement is proposed for Cat Creek. General principles regarding the proposed restoration are provided first followed by a detailed discussion for the restoration proposed for each tract.

Stream restoration requires determining the extent a stream has departed from its natural stability and then establishing the stable form of the stream under the current hydrologic conditions within the drainage area. The proposed restoration of the main channel and tributaries will include; construction of stable meander geometry, modifying channel cross-sections, raising the existing streambed elevation where possible, and establishing a floodplain at the new stream elevation, thus restoring a stable dimension, pattern, and profile. This restoration is based on analysis of current watershed hydrologic conditions, evaluation of the project site, and assessments of stable reference reaches. The following recommendations are included in this restoration plan:

- Form a stable channel with the proper dimension, pattern, and profile;
- Raise the existing streambed elevation where possible;
- Establish a floodplain along the stream channel;
- Place natural material structures in the stream to improve stability and enhance aquatic habitat;
- Stabilize stream banks with herbaceous and woody vegetation; and
- Create or enhance a minimum of a 30-foot riparian zone to provide aesthetic value, wildlife habitat, and bank stability.

In areas where on-site constraints do not allow for full restoration, enhancement is proposed. Stream enhancement requires determining the current condition of a stream and then evaluating the locations where the stream needs stabilizing. The proposed enhancement of Cat Creek will include creating bankfull benches where appropriate, installing grade control structures as needed, stream bank sloping, and establishing a permanent buffer along the stream to insure that the existing stream habitat will remain undisturbed. This enhancement is based on analysis of current watershed hydrologic conditions and evaluation of the project site.

Wetland restoration requires determining the type and extent of degradation at the site and the alteration of hydrologic and vegetative conditions that would be expected under natural conditions. The proposed restoration at Cat Creek will result in a wetland community on the floodplain adjacent to Cat Creek with adequate hydrologic conditions to support appropriate wetland vegetation. The restoration is based on the current conditions at the site and a comparison of this site to other local wetland sites. The following recommendations are included in this restoration plan:

- Remove fill material to elevations of natural soil;
- Plug and fill drainage ditches;
- Remove sub-surface drainage systems;
- Increase surface storage through contouring; and
- Stabilize the site by reforestation and creation of habitat diversity.

7.1 General Principles

7.1.1 Stream Restoration

The design was based upon natural channel design methodology. Morphological characteristics were measured on the existing stream and reference reaches to determine a range of values for the stable dimension, pattern, and profile of the proposed channel. The measured and proposed morphological characteristics are provided in **Appendix 4**.

Sediment Transport

A stable stream has the capacity to move its sediment load without aggrading or degrading. The total load of sediment can be divided into wash load and bed load. Wash load is normally composed of fine sands, silts and clay and transported in suspension at a rate that is determined by availability and not hydraulically controlled. The bed load is transported by material rolling, sliding, or hopping (saltating) along the bed. At higher discharges, some portion of the bed load can be suspended, especially if there is a sand component in the bed load. Bed material transport rates are essentially controlled by the size and nature of the bed material and hydraulic conditions (Hey and Rosgen 1997).

Entrainment calculations were completed for each restoration reach and are described in more detail in each proposed restoration tract section below.

Flooding Analysis

Cat Creek is not regulated by FEMA, and flooding analysis is not required. However, flooding analysis was performed to insure that the floodplain is not raised significantly along the stream to affect non-project areas. The USGS Method for estimating the magnitude and frequency of floods in rural basins was used to estimate the 2, 5, 10, 25, 50, and 100-year peak discharges for the different drainage areas.

The USGS regression equations from USGS Fact Sheet 007-00 were used to estimate flood discharges (USGS 2002). The latitude and longitude and drainage area for each site are inputs that are required.

HEC-RAS, version 3.0, was used to compute a flooding analysis for the existing and proposed conditions. This analysis is used to ensure that the project will not significantly change existing floodwater limits and that shear stresses are not unreasonable.

7.1.2 Wetland

Wetland restoration will consist of both restoration and enhancement. Wetland restoration at the Cat Creek site is based on an extensive field evaluation combined with the use of aerial photography, topographic mapping, and interviews with former owners. Data from ground water monitoring gauges were evaluated to determine the existing hydrologic condition. Restoration and enhancement of the wetlands will restore a more natural hydrologic regime and associated

functions. Revegetation of the site will use a landscape approach and integrate the wetland and stream with non-wetland floodplain and upland to create a continuous landscape.

Hydrologic restoration efforts will focus on undoing and eliminating the past drainage alterations and fill material. Wetland hydrology is primarily to be from groundwater and seepage areas located along various toe slopes. The natural drainage has been significantly altered, and the existing wet areas were once wetter than present. Hydrological restoration techniques will consist of filling ditches, removing drainpipes, excavation of fill materials, and restoring the natural contours to restore sheet flow. Adding shallow swales and microtopographic features throughout the floodplain will increase surface water storage and allow greater infiltration. Based on the analysis of the groundwater monitoring gauges, sufficient water is available to restore wetland conditions throughout the proposed restoration area for each tract.

7.1.3 Reforestation

There is no reliable record of the originally occurring communities along Cat Creek. The site will be reforested with vegetative communities suitable for stream bank and well-drained floodplain, and poorly drained floodplain and wetlands. Appropriate species selection and quick establishment of vegetation along the stream banks are needed to protect against potential erosion and damage to structures. Quick establishment of wetland vegetation is less critical, but is necessary before the function of the wetlands will be realized.

7.2 Swartwout Tract

7.2.1 Stream

The upper section of Cat Creek adjacent to the riding ring and bordering the woods will have minimal work performed. Sections of actively eroding banks in this section will be sloped back to create bankfull benches and reduce near bank stresses. The channel through the middle and lower reach of Cat Creek and UT1 will require construction of a new channel and installation of structures (**Design Sheet 1**). The old ford that forms the transition between the upper and lower reach will be removed.

Dimension

Cat Creek (Swartwout - Upper section)

The existing Cat Creek channel averages 17.5 feet across (bankfull width) with cross-sectional area average of 17.5 square feet. The design channel will be constructed to bankfull target dimensions that are based on reference reach data and regional curve information for a C-type channel under the Rosgen Stream Classification System. The channel will border on a E type with a width-to-depth ratio of 11.8.

Cat Creek (Swartwout Lower section)

The existing Cat Creek channel averages 19.9 feet across (bankfull width) with cross-sectional area average of 16.7 square feet. The revised channel will be constructed to bankfull target dimensions that are based on reference reach data and regional curve information for a C-type channel under the Rosgen Stream Classification System. The channel will border on an E type with a width-to-depth ratio of 11.8.

UT to Cat Creek (UT1)

The UT to Cat Creek channel averages 16.02 feet across with cross-sectional area averaging 20.2 square feet. The revised channel will be constructed to bankfull target dimensions for an C-type channel. The channel will border on a E type with a width-to-depth ratio of 11.9. The dimension used will allow vegetation to progressively "tighten" up the channel so that it becomes an E type channel over time.

Cat Creek (Lower Swartwout- Below Confluence)

The Cat Creek channel below the confluence of UT1 will be designed similar to the middle section but bankfull width and cross-sectional area will be increased to handle the increased flows entering from UT1. This section of the revised channel is approximately 110 feet long and does not warrant a separate set of design parameters. The revised channel will follow parameters from the Waldroop tract for this relatively short length to the end of the reach. The revised channel will be constructed to bankfull target dimensions for an C-type channel. The channel will border on a E type with a width-to-depth ratio of 12. The dimension used will allow vegetation to progressively "tighten" up the channel so that it becomes an E type channel over time.

Pattern

Pattern will be introduced into the stream by increasing the sinuosity of the stream through restoration. Meanders will be introduced into the channel with appropriate radius of curvatures and lengths based on the reference reach data and existing site constraints for an C-type stream channel that borders on an E – type channel. The site has two lateral constraints, the environmentally sensitive area and the nearby wetlands. The sinuosity is designed to match the reference condition and account for these lateral constraints. The second lateral constraint is the existing wetland on the east side of the tract. The proposed stream alignment of Cat Creek and UT1 will minimally impact the wetlands directly, as the alignment and profile is set so that the existing ground is the new floodplain and the limits of construction do not encroach on the wetland. Priority 1 restoration for the stream is important in the area that is adjacent to the wetland in order to limit excavation and improve groundwater hydrology. The resulting increase in base level elevation by approximately 1 foot and the reconnection of the floodplain will promote a more stable and consistent hydrology for the existing wetlands (**Design Sheet 1**). Introduction of these meanders will increase stream length, sinuosity, and habitat while lowering slope and shear stress.

Bed form

The design channel will incorporate riffles and pools to provide bed form found in C and E stream types with gravel bottoms. Pools will be located in the outside of meander bends with riffles in the inflection points between meanders. The degree of bed form alterations will relate to the type of valley the existing channel flows through. The proposed riffles will have a thalweg depth of 2.0 feet. Rock sills and j-hook vanes (log and rock) will be utilized, where appropriate, as grade control structures throughout the proposed channel. Modifications to the bed form will provide stability by the dissipation of energy and improve the in-stream habitat of the channel. Where possible, log structures will be used to provide detritus for benthic organisms.

Structures

At this time, no rock structures are planned in the upper section of Cat Creek because the existing bedrock appears sufficient and would preclude the placement of grade control structures. Root wads will be installed in the meander bend near the access road in the upper reach (**Design Sheet 1**). Rock sills will be installed where needed in the main channel through the lower section of Cat Creek and in UT1. Log and rock j- hook vanes (grade control vanes) will be installed where needed along the lower section of Cat Creek and UT1 to help turn the water, reduce near bank stress, and maintain pool definition. Cross-vanes will be installed after the confluence of the main channel and the tributary. The rock sills, rock vanes, and cross-vanes will be constructed from natural materials such as stone and boulders (blasted).

Shear Stress

Shear stress was checked using The Revised Shield's Diagram for a proposed riffle cross-section. The critical shear stress for the proposed channel has to be sufficient to move the D_{84} of the bed material, which for the existing riffles in the main channel of Cat Creek is coarse gravel. Based on the shear stress calculated, the Revised Shield's Diagram predicts that the main channel can move a particle that ranges from 40-400 mm (very coarse gravel to a small boulder). Because the existing bed material is coarse gravel in the riffles, the proposed stream has the competency to move its bed load according to the Revised Shield's Diagram and preliminary design calculations.

The D_{84} of the existing riffles in UT1 classifies as very coarse gravel. Based on the shear stress calculated, the Revised Shield's Diagram predicts that the tributary channel can move a particle that ranges from 50-500 mm (very coarse gravel to large cobble). Because the existing bed material is very coarse gravel in the riffles, the proposed stream has the competency to move its bed load according to the Revised Shield's Diagram and preliminary design calculations. **Appendix 7** contains the sediment transport calculations and data for each reach.

Flooding Analysis

The USGS regression equations from USGS Fact Sheet 007-00 were used to estimate the following peak discharges (USGS 2002). Along with existing and proposed cross-section, these

discharges were input into HEC-RAS to determine floodwater limits in the 2, 5, 10, 25, 50, and 100-year storms. **Table 9** summarizes the peak discharges for the different storm events.

Flooding analysis was performed to insure that the floodplain is not raised significantly along the stream. The USGS Method for estimating the magnitude and frequency of floods in rural basins was used to estimate the 2, 5, 10, 25, 50, and 100-year peak discharges for the different drainage areas.

Table 9. HEC-RAS Analysis for Swartwout Tract

Site	DA	Q ₂ (cfs)	Q ₅ (cfs)	Q ₁₀ (cfs)	Q ₂₅ (cfs)	Q ₅₀ (cfs)	Q ₁₀₀ (cfs)
Cat Creek, just upstream of UT1	769 acres (1.2 sq. mi.)	153	274	377	535	676	835
Cat Creek at Cat Creek Road Bridge	1,356 acres (2.1 sq. mi)	229	402	549	779	970	1192

7.2.2 Wetland

Hydrologic restoration in the upper field will consist of removing the existing drainpipes and filling or contouring the ditch adjacent to the wetland. Excavation of fill material and the creation of a low broad swale will slow surface drainage and increase hydrologic storage. Swales and contours will be constructed and oriented to allow for additional inputs to the restored areas from overbank flood events.

Hydrologic restoration in the lower field will consist of removing the existing drainpipes located along the toe slope and in the lower swale. Filling of shallow ditches and contouring will complete efforts to restore hydrology. Contouring will allow sheet flow to occur and will include shallow swales to slow surface drainage.

7.3 Waldroop Tract

Stream enhancement is proposed for the Waldroop Tract. Minor stabilization work is proposed on the entire reach. A majority of the reach will receive a slightly expanded riparian buffer. No wetland restoration is proposed for the Waldroop Tract.

7.3.1 Stream

Upper Reach

Enhancement in the upper section will involve installing grade control structures below the equipment crossing and below the bedrock feature to help control bank erosion. Only these two structures are planned in the upper reach on the Waldroop Tract. This reach is proposed for Enhancement Level II which will include fencing and an expanded riparian buffer.

Lower Reach

The fence along the lower section downstream of the barn on the bull pasture side will be moved 15 feet south, away from its existing location and into the bull pasture. This will allow the left bank to be sloped back at a 2:1 slope and the creation of a bankfull bench. Through this section, grade control structures will be installed for grade control, habitat improvement, and to create pools. The cross-vanes will be installed based on the design parameters for pool-to-pool spacing, which ranges from 46 to 173 feet. Since the section is fairly straight and available land is limited for increasing sinuosity, the grade control vanes will help to create pools for a stable bed sequence. This reach is proposed for Enhancement Level 1. **Design Sheets 2 and 3** shows the proposed layout for the Waldroop Tract.

Dimension

Within the Waldroop Tract, Cat Creek averages 22.9 feet wide with a cross-sectional area averaging 39.1 square feet. The design channel will be constructed to bankfull target dimensions for C type channels. The channel will border on an E type with a width-to-depth ratio of 12. The dimension used will allow vegetation to progressively "tighten" up the channel so that it becomes an E type channel over time.

Pattern

Because of the relatively narrow easement in this reach, no changes in pattern are proposed for the Waldroop Tract.

Bed form

A series of cross-vanes will provide bed form for this reach. Pools will be located below the cross-vane and riffles will be above. The proposed riffles in Cat Creek will have a thalweg depth of 2.6 feet.

Structures

Several structure types will be installed in the stream channels. These structures include, rock vanes, cross vanes, rock and log j-hook vanes, and root wads. These structures are placed at appropriate locations to reduce near bank stress, provide for bedform definition and maintenance, provide habitat and detritus for benthic organisms, and promote sediment transport.

Shear Stress

Shear stress was checked using the Revised Shield's Diagram for a proposed riffle cross-section. The critical shear stress for the proposed channel has to be sufficient to move the D_{84} of the bed material, which for the existing riffles is very coarse gravel. Based on the shear stress calculated, the Revised Shield's Diagram predicts that the stream can move a particle that ranges from 20-200 mm (coarse gravel to large cobble). Because the existing bed material is very coarse gravel in the riffles, the proposed stream has the competency to move its bed load according to Revised

Shield's Diagram and preliminary design calculations. Appendix 7 contains the sediment transport calculations and data.

Flooding Analysis

The reach undergoing Enhancement Level 1 is relatively short and is tied directly into the Parker Tract restoration. Therefore, a separate HEC-RAS analysis was not conducted on this reach. The HEC-RAS analysis conducted on the Parker Tract includes the lower reach of the Waldroop Tract (Section 7.4.1).

7.3.2 Livestock Watering

Cattle and horses will be restricted from accessing Cat Creek by the installation of new fencing in several areas where they are currently accessible. Water for the horses and cattle will be provided by installation of a watering structure. The exact configuration and type of watering structures have not been determined and is being developed in cooperation with the local Natural Resources and Conservation Service (NRCS) office.

7.3.3 Riparian Buffers

The riparian buffers along Cat Creek will be slightly expanded in several locations through the Waldroop Tract. On the upper portion (above the equipment bridge) the buffer will be expanded but fencing will be installed to restrict livestock from the creek. The riparian buffer in this area will average about 15 to 25 feet. The existing equipment crossing (ford) at the upper end of this reach will remain and new 12-foot gates installed to prevent livestock access to the creek.

Along the lower reach the riparian buffer will be planted within the expanded fence line. The buffer in this area will average 20 feet.

7.4 Parker Tract

Both stream and wetland restoration is proposed for the Parker Tract, which has been significantly altered by construction of the golf course. The parker contains the channelized Cat Creek, 2 channelized tributaries and several acres of depleted and filled wetlands.

7.4.1 Stream

The stream restoration work on the Parker Tract will include restoration of the dimension, pattern, and profile of the main channel and its tributaries. **Design Sheet 4** shows the proposed layout for the stream in order to incorporate the proposed wetland areas discussed in section 7.4.2. The reach will be predominately Priority 1 restoration with Priority 2 restoration on the lower portion due to the need to meet grade of the culvert at Ferguson Road. Grade control structures, bank revetment, and proper pool – riffle sequencing will provide channel stability, improved biological function and properly transport the sediment load.

Dimension

Cat Creek

Within the Parker Tract, Cat Creek averages 18.5 feet wide with a cross-sectional area averaging 40.3 square feet. The design channel will be constructed to bankfull target dimensions for C type channels. Raising the channel base so that it re-connects with the floodplain will aid in alleviating near bank stress during bankfull and greater storm events. The channel will border on a E type with a width-to-depth ratio of 11.9. The dimension used will allow vegetation to progressively "tighten" up the channel so that it becomes an E type channel over time.

UT2

The bankfull width of UT2 averages 8.2 feet with a cross-sectional area average of 12.9 square feet. The design channel will be constructed to bankfull target dimensions for C type channels. Raising the channel base so that it re-connects with the floodplain will aid in alleviating near bank stress during bankfull and greater storm events. The channel will have a width-to-depth ratio of 13.25

UT3

UT3 has a bankfull width average of 6.7 feet and a cross-sectional area average of 6.9 square feet. The design channel will be constructed to bankfull target dimensions for C type channels. Raising the channel base so that it reconnects with the floodplain will aid in alleviating near bank stress during bankfull and greater storm events. The channel will have a width-to-depth ratio of 13.24.

Pattern

Cat Creek

Restoring sinuosity to the channel will provide a pool- riffle sequence that is necessary for energy dissipation and biological function. Pattern will be introduced into the stream by restoring the sinuosity that is appropriate for a channel of this size drainage area and valley type (**Design Sheet 4**). Meanders will be introduced into the channel with appropriate radius of curvatures and lengths based on the reference reach data and existing site constraints for an E/C-type stream channel. The proposed alignment utilizes an adequate riffle length to meet the critical design parameter of the ratio of riffle slope to average water surface slope as derived from the reference reach. This is important for the design and self maintenance of relatively flat pools that function well as energy dissipaters and habitat. A short riffle causes steeper riffle slopes and has the possibility of causing pools to steepen over time as the central tendency of the channel shifts to a flatter riffle slope.

UT2

UT2 will be restored to follow the perceived remnant channel location, as indicated by topographic maps and a corresponding depression in the valley. The proposed re-alignment of the tributary to a more natural and sinuous state will help to reduce stress by dissipating energy in pools and loosing elevation in properly designed riffles. The revised channel will meet Cat Creek at a natural angle and reduce the stresses that Cat Creek currently experiences when the two flows converge. Reference reach ratios provide a predictable stable channel pattern. By matching the critical values of the reference reach, such as meander wave length, radius of curvature ratio, and belt width, the proposed channel will be subject to significantly less erosion. Restoring sinuosity also reduces shear stress in the channel by providing an average water surface slope that is flatter than the valley slope.

UT3

The proposed re-alignment of the tributary to a more natural and sinuous state will help to reduce stress by dissipating energy in pools and loosing elevation in properly designed riffles. The revised channel will meet Cat Creek at a natural angle and reduce the stresses that Cat Creek currently experiences when the two flows converge. Reference reach ratios provide a predictable stable channel pattern. By matching the critical values of the reference reach, such as meander wave length, radius of curvature ratio, and belt width, the proposed channel will be subject to significantly less erosion. Restoring sinuosity also reduces shear stress in the channel by providing an average water surface slope that is flatter than the valley slope.

Bed form

The design channels will incorporate riffles and pools to provide bed form found in E stream types with gravel bottoms. Pools will be located in the outside of meander bends with riffles in the inflection points between meanders. The proposed riffles in Cat Creek will have a thalweg depth of 2.6 feet. The proposed riffles in UT2 will have a thalweg depth of 1.5 feet. Cross vanes and rock sills will be used as grade control structures throughout the main channel while rock sills alone will act as grade control structures on UT2. The cross vanes will be constructed out of natural materials such as boulders and stone. Modifications to the bed form will provide stability and habitat to the channel. The proposed riffles on UT3 will have a thalweg max depth of 1.15 feet

Structures

Several structure types will be installed in the stream channels. These structures include, notched rock sills, rock and log vanes, cross vanes, rock and log j-hook vanes, and root wads. These structures are placed at appropriate locations to reduce near bank stress, provide for bedform definition and maintenance, provide habitat and detritus for benthic organisms, and promote sediment transport. Structures can create problems if placed improperly or too often. This design is a "softer" approach that uses more log material and less structures over all.

Shear Stress

Shear stress was checked using the Revised Shield's Diagram for a proposed riffle cross-section. The critical shear stress for the proposed channel has to be sufficient to move the D₈₄ of the bed material, which for the existing riffles is very coarse gravel. Based on the shear stress calculated, the Revised Shield's Diagram predicts that the stream can move a particle that ranges from 20-150 mm (coarse gravel to large cobble). Because the existing bed material is very coarse gravel in the riffles, the proposed stream has the competency to move its bed load according to the Revised Shield's Diagram and preliminary design calculations. **Appendix** 7 contains the sediment transport calculations and data.

Flooding Analysis

The USGS regression equations from USGS Fact Sheet 007-00 were used to estimate the following peak discharges (USGS 2002). Along with existing and proposed cross-section, these discharges were input into HEC-RAS to determine floodwater limits in the 2, 5, 10, 25, 50, and 100-year storms. **Table 10** summarizes the peak discharges for the different storm events.

Flooding analysis was performed to insure that the floodplain is not raised significantly along the stream. The USGS Method for estimating the magnitude and frequency of floods in rural basins was used to estimate the 2, 5, 10, 25, 50, and 100-year peak discharges for the different drainage areas.

Table 10. HEC-RAS Analysis for Parker Tract

Site	DA	Q_2	Q ₅	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀
		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
Just upstream before UT2 enters Cat Creek from the	1,650 acres (2.6 sq. mi.)	263	460	626	877	1099	1347
pond							
Just upstream before UT3 enters	1,982 acres (3.1 sq. mi.)	299	521	706	987	1235	1571
Upstream of Ferguson	2,139 acres	315	548	742	1036	1295	1583
Road Culvert	(3.3 sq. mi.)						

7.4.2 Wetland

The Parker Tract has been extensively altered from construction of the golf course. Historically the tract once contained an extensive wetland system. The restoration effort will focus on trying to undo the past golf course alterations and will focus on the area on the north and east side of the creek. The shallow ditch along the northern edge of the property will be plugged at its lower end. Using the bottom of the ditch as a reference elevation, fill material will be excavated. This will allow the seepage from the toe slope to remain on-site instead of discharging directly into the creek. Low swales will be formed parallel to the hill slope to catch and hold the seepage. Any drain tiles or pipes encountered will be removed.

Although groundwater gauges indicate that hydric conditions are currently present, this floodplain area has been extensively altered and is not as wet as it once was. Plugging the ditch and removal of the fill will help return the historic hydrology to the site.

7.5 Preserve Tract

The relatively stable reach of Cat Creek that runs through the Preserve tract is proposed as Enhancement 1. This involves a reestablishment of riparian vegetation, bank stabilization on a stretch of less than 150' in length and the establishment of pools at appropriate intervals, as determined from reference reach data. UT4 is proposed as Restoration (Priority 1) in order to reconnect the channel with its floodplain and restore dimension, pattern and profile of a stable, natural channel of this valley type and drainage area.

7.5.1 Stream

Cat Creek

The Cat Creek channel averages 33.0 feet wide with cross-sectional areas average of 50.2 square feet. The design channel will be constructed to bankfull target dimensions for C-type channels. This reach has been altered by the development of the tract as part of a golf course. However, the channel was not particularly incised and has formed a relatively stable bankfull floodplain. Where stabilization is necessary, typical cross section is used that is derived from reference reach conditions. The proposed typical cross-sections for the channel are provided in **Design Sheet 5** and 6. The typical cross-sections are not different from the Parker Tract because there is not a significant increase in the drainage area from the lower Parker tract and the Preserver tract.

UT4

The UT4 channel averaged 13.2 feet wide and has an average cross sectional area of 6.2 square feet. This small channel will be restored to natural dimensions for a channel of this valley type and similar drainage area as determined from dimensionless ratios from the appropriate reference reach. A width-depth ratio of 10.48 is proposed for this reach. This geometry corresponds with very low w/d C type channels that border on E type channels. The relatively small drainage area of this reach will allow for a lower width-depth ratio channel to be constructed to transport sediment loads from roadways and upstream agricultural activities.

Pattern

Cat Creek

The existence of herbaceous vegetation along the channel banks is likely to be a significant factor in the relative stability of Cat Creek in the Preserve tract. For this reason, the proposed design has no significant alteration the channel pattern. This reach is too far along with stabilizing itself to make it worth the disturbance that would be required to provide Cat Creek with a more typical sinuosity. The existing sinuosity, with enhancement to the vegetation, and

stabilization of the eroding banks where needed, will provide a stable pattern due to the stream's ample floodplain access.

UT4

Pattern will be introduced into the stream by increasing the sinuosity of the stream through restoration (**Design Sheet 5 and 6**). Meanders will be introduced into the channels with appropriate radius of curvatures and lengths based on the reference reach data and existing site constraints for an C/E-type stream channel. Reference reach ratios provide a predictable stable channel pattern. By matching the critical values of the reference reach, such as meander wave length, radius of curvature ratio, and belt width, the proposed channel will be subject to significantly less erosion. Restoring sinuosity also reduces shear stress in the channel by providing an average water surface slope that is flatter than the valley slope.

Bed Form

Cat Creek

Although this reach is fairly stable, it has very little bedform and indications are that what instability the channel presently experiences is probably due to lack of energy dissipation via pools. For this reason, the proposed enhancement to Cat Creek includes the installation of structures at appropriate intervals to create a pool-pool spacing that is indicated in the reference reach. The design will provide pools for energy dissipation and the maintenance of the pool riffle sequence that make up a stable natural channel. Restoring this stable profile to the channel with minimal construction will improve the channel's stability over long periods of time, improve sediment transport and restore needed habitat and biological function.

UT4

The design channel incorporates riffles and pools to provide bed form found in E stream types with gravel bottoms. Pools are located in the outside of meander bends with riffles of adequate length to loose elevation between the meanders. The proposed riffles in the main channel will have a thalweg depth of 1.1 feet.

Structures

The proposed design uses rock and log j-hook vanes and notched sills to reduce near bank stress and provide pool definition where needed for the Cat Creek channel. Structures are to be placed without disturbing the riparian vegetation and channel sections in between the structures. Rather, the design limits the access to install structures to a perpendicular approach to the channel This will minimize the disturbance to Cat Creek while allowing placement of needed structures to primarily improve bedform. No structures are proposed for UT4 due to the small size of the channel. During construction, the designer may choose to a grade control near the confluence with Cat Creek if flow observations dictate that one is needed.

Shear Stress

Shear stress was checked using the Revised Shield's Diagram for a proposed riffle cross-section. The critical shear stress for the proposed channel has to be sufficient to move the D_{84} of the bed material, which for the existing riffles is coarse gravel. Based on the shear stress calculated, the Revised Shield's Diagram predicts that the stream can move a particle that ranges from 18-200 mm (coarse gravel to large cobble). Because the existing bed material is coarse gravel in the riffles, the proposed stream has the competency to move its bed load according to the Revised Shield's Diagram and preliminary design calculations. **Appendix** 7 contains the sediment transport calculations and data for each reach.

Flooding Analysis

(Note: HEC-RAS for proposed will be performed during the design phase once Earth Tech has verified data from the topographic survey that may be in error.) The USGS regression equations from USGS Fact Sheet 007-00 were used to estimate the following peak discharges (USGS 2002). Along with existing and proposed cross-section, these discharges were input into HEC-RAS to determine floodwater limits in the 2, 5, 10, 25, 50, and 100-year storms. **Table 11** summarizes the peak discharges for the different storm events.

Flooding analysis was performed to insure that the floodplain is not raised significantly along the stream. The USGS Method for estimating the magnitude and frequency of floods in rural basins was used to estimate the 2, 5, 10, 25, 50, and 100-year peak discharges for the different drainage areas.

Table 11. HEC-RAS Analyses for Preserve Tract

Site	DA	Q_2	Q ₅	Q ₁₀	Q ₂₅	Q ₅₀	Q_{100}
Just upstream of UT4	2,147 acres (3.4 sq. mi.)	315	549	744	1038	1297	1586
End of Preserve Tract and end of project site	2,349 acres (3.7 sq. mi.)	336	584	790	1101	1375	1679

7.5.2 Wetland

The Preserve Tract has been extensively altered by past agricultural and golf course activities. Restoration will consist of removal of large amounts of fill that has been placed on the site. Using the existing wetlands as a reference elevation fill material will be removed to expose buried hydric soil layers. Excavation of fill material around the old pond will expand the existing wetland. The culvert for the tributary above the old pond bed will be removed and the water directed into the wetland. The existing wetlands will be enhanced by planting hardwoods and shrubs.

7.6 Natural Plant Community Restoration

Revegetation efforts will emulate natural vegetation communities found along relatively undisturbed stream corridors. To quickly establish dense root mass along the channel bank, a permanent native grass mixture will be seeded on the stream bank along with temporary seeding to provide immediate erosion control. Areas around structure installations will be revegetated with live stakes, and transplants may be salvaged on-site. Live stakes will be installed on the outside of the meander bends to ensure a dense root mass in those areas of high stress. It may be necessary to line key sections of the channel bank with coir matting to provide cover until vegetation can be established. This will be determined further along in the design phase of the project.

Along the tops of the channel banks (riparian area), trees and shrubs will be planted. A mixture of live stakes and salvaged transplants will be utilized to stabilize the banks. In the areas where invasive and exotic species are found during construction and monitoring, control by removal or appropriate herbicides will be implemented to prevent competition with the revegetation efforts. The use of material that is genetically adapted to specific site conditions enhances long-term growth and survival and avoids contaminating the gene pool of the surrounding vegetation with non-adapted ecotypes. Plant material should be native species collected or propagated from material within the mountain physiographic province and within 200 miles north or south latitude if possible.

Reforestation plans are provided in **Designed Sheets 18 through 23** and will focus on 3 separate zones having different hydrologic regimes and will include: streambank vegetation; riparian buffer on well-drained floodplain; and wetlands in poorly drained floodplain. Along the streambank, vegetation will be subjected to fluctuating stream flows and stresses. The riparian buffer on the well-drained portions of floodplain will be subjected to occasional flooding, but because of the well-drained nature will be drier much of the year. The wetlands within the floodplain will be saturated much of the year and will be subjected to shallow ponding for long periods. Vegetation planted in each of these areas will need to survive in different hydrologic conditions. The following paragraphs describe the vegetation treatments for the 3 individual zones.

Streambank Vegetation

Areas around structure installations on Cat Creek and the UT's will be revegetated with live stakes. All banks excluding point bars will be reinforced with live stakes. Species that may be proposed for planting in these areas are listed below.

Tag alder
Black willow * Salix nigra*
Silky willow
Silky dogwood
Elderberry
Arrow wood

Alnus serrulata
Salix nigra*
Salix sericea
Cornus amomum
Sambucus canadensis
Viburnum dentatum

^{*}Use is limited to only in outer meander bends

Woody vegetation will be planted in November or February and March. Care will be taken to make sure that planting occurs in temperatures above freezing to insure maximum seeling survival.

Riparian Buffer - Well-drained Floodplain

The target community to be planted in the riparian buffer and well-drained floodplain zone is a Low Mountain Alluvial Forest as described in Schafale and Weakley (1990). Bare root material will be used. Planting a mixture of the species listed below will best reflect the character of stream bank vegetation typically found along small low mountain streams. Species that may be proposed for planting in these areas are listed below.

Bitternut hickory	Carya cordiformis
Black walnut *	Juglans nigra
Carrier and	r

Green ash Fraxinus pennsylvanica

Northern red oak Quercus rubra River birch Betula nigra Slippery elm Ulmus rubra Sugarberry Celtis laevigata Sycamore Platanus occidentalis Spicebush Lindera benzoin Painted buckeye Aesculus sylvatica Possum-haw Viburnum nudum

Wetlands

The target community for the wetlands and poorly drained zone of the floodplain is a Swamp Forest-Bog Complex as described in Schafale and Weakley (1990). This community is described as occurring in "poorly drained bottomland, generally with visible microtopography of ridges and sloughs or depressions. It is also noted that in addition to being seasonally or intermittently saturated that seepage is sometimes present. Their planting is dependent upon availability. Species that may be proposed for planting in these areas are listed below.

Bitternut hickory	Carya cordiformis	FAC
Black willow	Salix nigra	OBL
Green ash	Fraxinus pennsylvanica	FACW
Ironwood	Carpinus caroliniana	FACW
Red maple	Acer rubrum	FAC
River birch	Betula nigra	FACU+
Sycamore	Platanus occidentalis	FACW-

Areas outside the proposed 30-foot buffer that are currently vegetated with non-invasive trees or shrubs will remain undisturbed where possible and succession allowed to proceed naturally. Woody vegetation will be planted between November and March to allow plants to stabilize during the dormant period and set roots during the spring season. A minimum of 680 stems per

^{*}Use is limited

acre will be planted in portions of the buffer that have been disturbed by construction activities. No planting or disturbance is allowed within the environmentally sensitive area on the Swartwout Tract.

On the Waldroop Tract the middle portion of the riparian buffer will consist of alder, elderberry, and black willow. The riparian vegetation will be periodically trimmed to an elevation of 3 to 5 feet to allow visual access to the horse pasture from the Waldroop residence. This is necessary for safety. Additionally, elderberry will be planted throughout the riparian buffer on the Waldroop Tract.

7.7 On-site Invasive Species Management

Fescue is present in old pastureland throughout the site and can hinder the establishment of riparian buffer vegetation. Specifications for fescue eradication will be included in the Special Provisions section of the bid document. Kudzu is also beginning to encroach onto the Preserve Tract along Ferguson Road. With roots that can extend to 9 feet below the soil surface and a potential growth rate of one foot per day, kudzu has the potential to overwhelm a newly planted site if not adequately controlled. Regular, aggressive management of this exotic invasive vine will be required. Management should begin with the site preparation stage and continue through the 5-year monitoring period at a minimum. An additional 5 years of aggressive management may be necessary to completely eradicate the viable propagules. Management techniques will include an initial site preparation burn, painting cut stumps with an appropriate herbicide such as glyphosate, sifting stockpiled soil to remove root fragments, and monitoring the project area monthly April through November to spray sprouts with glyphosate.

8.0 PERFORMANCE CRITERIA

The following section provides both the stream and wetland monitoring for the proposed restoration. The stream will be monitored to insure that it is stable while the wetland will be monitored to determine if it meets the hydrological requirements. Vegetation will also be monitored.

The monitoring report will follow the most recent EEP guidelines at the time monitoring is initiated. The report will discuss the current years' results and a discussion of any changes that have occurred on the restoration site. The relative significance of these changes will be discussed in detail and a maintenance plan will be recommended if applicable. The current data overlaid over the previous data and a photo log showing successive photos will be included

8.1 Streams

Monitoring of the stability of the channel is recommended to occur after the first growing season and should continue annually for a period of 5 years or until two bankfull events have been documented. Bankfull events must be documented during separate monitoring years.

The dimension, pattern, and profile of the stream should show no radical change during the 5-year monitoring period. To determine this, the longitudinal profile and cross-sections will be resurveyed annually. Cross-sections will be overlaid to verify no significant change in the dimension from year to year. Similarly, the longitudinal profile will be overlaid to confirm a stable bed profile, i.e. riffle pool spacing should remain fairly constant and there should be a general lack of aggradation and degradation.

8.2 Wetlands

Monitoring of the wetland restoration site will be performed for 5 years or until success criteria are met. Monitoring is proposed of both vegetation and hydrology.

Monitoring of vegetation will follow protocols established in the most recent version of the Carolina Vegetative Survey-EEP Protocol. Sample plot distribution will be correlated with the hydrological monitoring locations to help correlate data between vegetation and hydrology parameters.

Success will be determined by survival of target species within the sample plots. A minimum of 260 trees/acre must survive for at least five years after initial planting. At least six different representative tree species should be present on the entire site. If the vegetative success criteria are not met, the cause of failure will be determined and an appropriate corrective action will be taken.

Monitoring gauges will be installed in enhancement/restoration areas to monitor site hydrology. Monitoring gauges will be installed in accordance with USACE guidelines (USACE 1993b). The number and location of the gauges will be determined after final design.

The hydrologic goal is for the soil to be ponded, flooded, or saturated within 12 inches of the surface for at least 8 percent of the growing season under average climatic conditions.

8.3 Riparian Vegetation

Monitoring of the riparian vegetation outside of the wetland restoration areas will be performed. Monitoring protocols and success criteria will be the same as for the wetland areas.

8.4 Photograph Documentation

Photographs will be taken on an annual basis and compared to the as-built photos. The photos will be used to make a qualitative assessment of channel aggradation or degradation, bank erosion, success of riparian vegetation, effectiveness of erosion control measures, and the presence or absence of developing in-stream bars. Any significant changes from the as-built conditions will be discussed and highlighted in the report.

9.0 REFERENCES

Amoroso, J.L., ed. 2002. *Natural Heritage Program List of the Rare Plant Species of North Carolina*. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.

Environmental Laboratory. 1987. U.S. Army Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

Federal Emergency Management Agency. Macon County, NC Flood Insurance Rate Map, Community Panel Number 370150 0006A C. 2001.

Harrelson, C., C.L. Rawlins and J. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. United States Department of Agriculture, Forest Service. General Technical Report RM-245.

Hey, R and D. Rosgen. 1997. Fluvial Geomorphology for Engineers. Wildland Hydrology, Pagosa Springs, Colorado.

Lee, M.E., R.K. Peet, R.D. Stephens, and T.R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation. Version 4.0

LeGrand, H.E., Jr. and S.P. Hall, eds. 2001. *Natural Heritage Program List of the Rare Animal Species of North Carolina*. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.

NCDENR. "Water Quality Stream Classifications for Streams in North Carolina." *Water Quality Section*. http://h2o.enr.state.nc.us/wqhome.html (16 July 2001).

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, Colorado.

Schafale, M. P., and A. S. Weakley. 1990. *Classification of the Natural Communities of North Carolina, Third Approximation*. North Carolina Natural Heritage Program, Division of Parks and Recreation, Dept. of Environment, Health and Natural Resources, Raleigh, NC.

United States Fish and Wildlife Service "U. S. Fish and Wildlife Service Ecological Services: Southeast Region" http://southeast.fws.gov/es/ (accessed 11 November 2003).

United States Department of Agriculture, Natural Resource Conservation Service (NRCS). 1996. Soil Survey of Macon County, North Carolina, North Carolina.

United States Geological Survey (USGS). Fact Sheet 007-00. 2002. "The National Flood-Frequency Program-Methods for Estimating Flood Magnitude and Frequency in Rural and Urban Areas in North Carolina, 2001".

North Carolina Rural Mountain Regional Curve

- Mountain Regional Curve
- Waldroop Tract Existing and Proposed
- + Raccoon Reference

 - Power (Mountain Regional Curve)
- Swartwout Tract Existing and Proposed
- Parker Tract Existing
- Parker Tract Proposed

- Swartwout UT Existing and Proposed
- Preserve Tract Existing
- Preserve Tract Proposed

FIGURE 5 **NORTH CAROLINA MOUNTAIN REGIONAL CURVE**

Cat Creek Restoration Plan Macon County, North Carolina

APPENDIX 1

AQUATIC SURVEY REPORT

Alderman Environmental Services, Inc.

September 13, 2003

PROJECT: Freshwater mussel survey for A-9 WM, survey of Cat Creek

Target Species: Federally listed endangered Appalachian elktoc (Alasmidonta

raveneliana)

BIOLOGIST: John M. Alderman

ASSISTANT: Joseph D. Alderman

N.C. WILDLIFE RESOURCES COMMISSION ES PERMIT: NC - 2003 ES 21

U.S. FISH AND WILDLIFE SERVICE ES PERMIT: TE065756-0

STATION 20030906.2jma

LOCATION: Cat Creek, Little Tennessee River Basin, Macon County, North Carolina; downstream and upstream from the Ferguson Road (SR 1148) bridge crossing within the mitigation project footprint; bridge location: 35.19812 N, 83.34120 W; see associated map at end of report.

SURVEY DATE: September 6, 2003

SITE COMMENTS: Poor quality habitat, heavy sediment load, no buffers.

HABITAT:

WATERBODY TYPE:

Stream

FLOW:

Run, slack

RELATIVE DEPTH:

Very shallow

DEPTH (%<2 FEET):

98

SUBSTRATE:

Silt, sand, gravel, cobble, boulder, bedrock

COMPACTNESS:

Normal

SAND/GRAVEL BARS:

Present

HABITAT (CONT.):

WOODY DEBRIS:

Low

BEAVER ACTIVITY:

None

WINDTHROW:

None

TEMPORARY POOLS:

None

CHANNEL WIDTH: BANK HEIGHT:

3-5+ meters ~ 1.5+ meter

BANK STABILITY:

Very stable to some erosion and undercutting

BUFFER WIDTH:

None

RIPARIAN VEGETATION: Wooded (very little), shrub-brush, grass

LAND USE:

Natural, timber, rural, active pasture

PERCENT COVER:

WOODLAND EXTENT:

Not extensive

NATURAL LEVEES: VISIBILITY:

None

Clear

WATER LEVEL:

Normal

WEATHER:

Sun-cloud, warm

TECHNIQUES AND SURVEY TIME:

TECHNIQUES:

Visual and tactile

SURVEY TIME:

1.1 person-hours

FRESHWATER MUSSELS:

None

BIOLOGICAL DETERMINATION: No Effect for federally listed species.

MUNICIPALITIES / MAJOR STREAMS COUNTY LINE SURVEY STATION Mies Cat Creek A-9 WM, Macon Co., NC; SR 1148 感 いるというない

APPENDIX 2

EXISTING CONDITIONS DATA

This continue with the continue within the continue with the continue with the continue with the con	1	River Basin; Stream Reach; Oralange Area; Date; Description;		Little Tennessee Cat Creek-Middle Swartw 1.26 7/21/2003 LONGITUDINAL PROFIL	Little Tennessee Cat Creek-Middle Swartwout Tract 1.26 T/21/2003 LONGITUDINAL PROFILE	Tract								STA BI	H8 H 4.73 h	D4.73	99 92	100.00 F	NOTE Fence post-east of stream post marked at 4.0'	ast of strea	m post ma	rked at 4.0'		
1	10 10 10 10 10 10 10 10		(FS)	ži,	WS (FS)	WS	BKF (FS)	BKF	TOB (FS)	901		Cilips	BK Ht			Aax Pool Depth	Pool	Riffle Length			Gilde	Run	Run Slope	
1, 10, 10, 10, 10, 10, 10, 10, 10, 10,	1, 10, 10, 10, 10, 10, 10, 10, 10, 10,		7.19	97.56	6.67	98.76	5.23	99.32	3.98	180.78	Run Run	104.73	1.69					7	0.0083			7	0.0123	
1,11 1,12	17.5 17.5		7.39	97.34	6.75	86.78	5.52	99.21			Top Pool	104.73		52	4		0.0148							
1,11 1,12	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		7.52	97.21	6.75	97.98	60.9	09 00	2	1000	Pool	104.73	30			2 64								
17 17 18 18 18 18 18 18	17. 17.		7.47	97.26	0.90	87.78	5.36	98.50	4.32	IM.	Ton Polls	104 //	30			10.7		7	0.0586					
State Stat	1		7.73	97.00	7.36	97.37					Run	104.73										4	0.0000	
1	State Stat		8.07	96.66	7.36	97.37	5.75	98 98	4.55	100.18	Pool CS	10473	1.52	41	12		0.0034							
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1		3.05	4.6	7.40	97.35	5.75	98.98	4 62	100.11	Ton Glide	104 /	1.55			2.54					0.0086			
8 12 8 6 6 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.17 86.61 7.57 87.18 61.44 81.69 41.47 81.99 RIBIN C 814.73 14.31 7 2.96 0.0000		7.81	96.92	7.46	97.27		3	40.	3	Top Pille	104 73						1	0.0164					
State Stat	Section Sect		9.12	96.61	7.57	97.16	6.04	69.86	4.74	66.66	Fethe CS	104.73	1.63											
State 1.5 1.	Section 178 Section 17		8.28	96.45	7.64	97.09					Run	275		,			00000					11	0.0218	
Secondary Seco	8 50 5 65 1 758 5 65 1 758 5 65 1 70 5 1 70		127	95.46	7.90	96.81	6.31	98.42			N P M	10473		ī	,	2.96	0.0000							
8.50 9.654 8 228 96.75 6.36 99.23 Form File 1 100 Pffile 1 1047 1.34 2.56 9.551 Form File 1 1047 1.34 3.55 9.551 Form File 1 1047 1.34 3.55 9.551 Form File 1 1047 1.34 3.551 9.551 Form File 1 1047 1.34 3.551 9.551 9.551 Form File 1 1047 1.34 3.551 9.55	8.30 664.4 798 667.7 686.4 798 667.7 70 686.7 70		3.62	96.11	7.88	96.85	6.31	98.42	5.21	98,62	Glide	104.73	1.48								0.0167			
State Stat	State Stat		8.30	96.43	7.98	96.75	6			0000	Top Raffle	10417						52	0.0124					
1	State Stat		3.92	95.84	8.22 8.20	96.53	0.30	98.3/	9.50	88.73	Riffle	104 23	3											
8.34 96.45 86.80 86.13	State Stat		3.76	95.97	8.29	96.44	6.70	98.03	5.77	98.86	Run	10473	1.45									o	0.0322	
State Stat	9 51 9 54 9 55 9 52 1 9 5 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1		3.34	95.45	8.60	96.15					Top Pool	104 73			6		0.0000							
50 56 56 56 56 56 56 56	50 56 57 58 58 58 58 58 58 58		330	94.92	8.52	96.21					Mac Pool	20,2								σ	0.0089			
8 60 9435 914 9559 757 9716 621 700 Riffe 10473 161 BK HU PASSPORTION STATE S	S S S S S S S S S S		3.02	95.71	8.66	96.07					Run	10473										23	0.0209	
BK HV Pool MAX Pool Pool MAX Pool RITIO	Se7 Se4 Se 4 Se		9.80	94.93	9.14	95.59	7.57	97.16	6.21	98.52	Top Riffle	10473	1.61											
Birk Hu	Bix HV		9.87	94.86	9.24	95.49					Riffle	10473												
The state of the	Marked Colored Mark										1		BK HV BKf Ht.			Max Pool Depth	Slope Slope	Riffle Length			Slope	Run	Run Slope	
175 mm may 153 38 10 2 57 0.0043 14 0.0040 7 0.0050 11 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0350 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	FF With 175 (176)		adois w	0.0131	ws slope	0.0148	DKT Slope U	01130			UIIIU Xew		80.	67 69		2.06	0.0000	36			0.000	7 %	0.0200	
Longitudinal Profile Cat Creek-Swartwout Tract Middle Section	Man ratio (1)	370	- 14) (4)								Mak		1,00	000		267	0.0000	14			0.000	11	0.0350	
27 Marchalo NA 27 256 07300 22100 07800 38000 and angrano NA 21 257 03200 13500 22 3800 25800 Longitudinal Profile Cat Creek-Swartwout Tract Middle Section	Au. D (rt)= 2.7 2.56 0.7300 2.2100 0.7800 3.9000 2.2	BK	F D (ft)=								Min ratio		2 X	1.4		2.51	0.0000	<u>.</u>			0.0000	-	1.5300	
1 2.67 0.3200 1.3500 2.3800 2.8800	Longitudinal Profile Cat Creek-Swartwout Tract Middle Section	BKF Ma	3x D (ft)=								Max ratio		X Y	2.7		2.96	0.7300		2.2100		0.7600		3.9000	
5	Longitudinal Profile Cat Creek-Swartwout Tract Middle Section										avg ratio		A A	2.1		2.67	0.3200	33	1.3500		0.3800	3	2.5800	4.7
Longitudinal Profile Cat Creek-Swartwout Tract Middle Section	× × ×														4			c c		77		Š		100
	*									Sat Cre	Longi ek-Swarty	itudinal F wout Tra	Profile ct Mido	le Sec	tion									
	×××	3	×	×																				
×					K		,																	

		_	_	_		_	_	-						_			_	_			_						T	1	- 1			
	3)	try	Area	(Sq. Ft.)	0	0.2	0.1	0.2	2.0	3.4	4.0	2.8	5.5	3.8	2.2	1.9	4.9	2.5	4.7	8.0	3.0	5.7	5.9	5.5	0. 4	. 4	9.09			(A (TOB)	9.09	23.3
	TOP OF BANK (TOB)	Hydraulic Geometry	Depth	(Feet)	0.0	0.4	5.0	2.3	2.7	4.0	4.0	4.0	3.9	3.6	3.5	2.8	2.5	2.4	2.3	2.3	2.7	2.7	2.0	5.0	, a	9.0				SUMMARY DATA (TOB)	A(BKF)	W(BKF)
	TOP OI	Hydr	Width	(Feet)	0.0	1.0	0.1	0.1	8.0	1.0	1.0	7.0	1.3	1.0	9.0	9.0	1.8	1.0	2.0	3.5	1.2	2.1	1.2	v. c	2 7	2.0	23.3			밂		
																											TOTALS					
	3KF)	etry	Area	(Sq. Ft.)	0.0	0.0	0.4	5.3	2.0	1.4	2.5	1,8	6.0	0.7	1.2	0.5	9.0	6.0	9.0	1.5	0.4	16.7			=		120	0.000	1.01	_	> .	_
	BANKFULL (BKF)	Hydraulic Geometry	Depth	(Feet)	0.0	0.3	0.7	2.0	2.0	2.0	1.9	1.6	1.5	0.8	0.5	0.4	0.3	0.3	0.7	0.7	0.0				SIMMARY DATA (BANKEIII I)		W(FPA)	Slope	Sinuosity	Area= A	Width= W	Depth= D
	BA	Hydra	Width	(Feet)	0.0	0.1	8.0	1.0	1.0	0.7	1.3	1.0	9.0	9.0	1.8	1.0	2.0	3.5	1.2	2.1	1.2	19.9			AY DATA	200	16.7	19.9	5.0	9.0	23.7	6.0
																	ws=8.33				and a feedback and	TOTALS			SHMMAE		A(BKF)	W(BKF)	Max d	Mean d	W/D	Entrenchment
(Gu	NOTES	Notes	RIGHT				FENCE			RTOB		RBKF			REOW		¥			LEOW							LBKF		LTOB			LEFT
Cat Creek Swartwout 1/2 sq. miles (765.19 acres) 12/9/2003 CS#1 Riffle (beside riding ring)	ELEVATION	(Feet)	95.26	95.10	95.09	95.00	95.09	95.04	95.10	95.03	94.63	93.01	92.68	92.31	91.05	91.04	91.01	91.12	91.39	91.50	92.18	92.49	92.62	92.76	92.33	92.30	93.01	93.74	94.10	94.21	94.45	95.55
Car Creek Swartwout 1.2 sq. miles (765.19 a 12/9/2003 CS#1 Riffle (beside rid	FS	(Feet)	4.74	4.9	4.91	9.00	4.91	4.96	4.90	4.97	5.37	66.99	7.32	7.69	8.95	8.96	8.99	8.88	8.61	8.50	7.82	7.51	7.38	7.27	7.67	7.70	6.99	6.26	5.90	5.79	5.55	4.45
ii ii	Ξ	(Feet)	100	100	100	100	100	100	100	100	00	100	100	100	100	100	100	100	100	100	100	100	100	8 5	1 2	901	100	100	100	100	9 5	100
Watershed: Sheam Reach: Brainage Area: Shation: Feature:	STATION	(Feet)	0.00+0	0.60+0	0+16.0	D+22.0	0+25.0	0+30.0	0+34.0	0+35.0	0+36.0	0+36.1	0+36.2	0+37.0	0+38.0	0+39.0	0+39.7	0+41.0	0+42.0	0.42.6	0+43.2	0+42.0	0+46.0	0+49.0	h+52.7	0+54.8	0.95+0	0+57.5	0+58.3	0.09+0	0+62.0	0.89+0

												公司
	Bank	Erosion	Potential	high	high	high	high	extreme			very high	
dex (BEHI)			Index	7.9	6.5	7.5	7.5	10	0	2	44.4	Looking Upstream
Hazard In			Value	0	0.25	10	88	9	SilvClay			Гро
Bank Erosion Hazard Index (BEHI)			Criteria	Bank HVBkf Ht	Root Depth/Bank Ht	Root Density (%)	Bank Angle (Degrees)	Surface Protection (%)	Bank Materials	Stratification		
		_		_		-0.50						

SUMMARY DATA (TOB)
A(BKF) 60.6
W(BKF) 23.3
Max d 4.0
Mean d 2.6

Field Crew;	Amanda Todd and George Lankford	
River Başin:	Little Tennessee River	
Watershed:	Car Creek	
Stream Reach:	Swartwout	
Drainage Area:	1.2 sq. miles (765,19 acres)	
Date:	7/15/2003	
Station:		
100	1	

																													-	-			-		. ,			칟.	1
F)	netry	Area	(Sq. Ft.)	0	0.2	0.9	12	00	0.0	5 0	0.0	9.0	10	80	1.1	23	000	1.4	20	1.5			9 0	0.00	8.02				SIMMARY DATA (BANKEIII)	IDANAPULI	MINEDAL	()	adole	OFFICOSITY	Area A	Width= W	nebu-	Bankfull= BKF	.ve
BANKFULL (BKF)	Hydraulic Geometry	Depth	(Feet)	0.0	0.4	9.0	9.0	0.7	9 0	9 0	9 0	0.7	0.9	1.4	1.7	10	2.1	2.1	000	17	4	1		2					RV DATA	2000	30.0	20.00	20.4		0.0	20.00	n () look	gloriai cur
BANK	Hydra	Width	(Feet)	0.0	1.0	2.0	2.0	1.4		4	10	1.0	1.3	0.7	0.7	1.3	1.5	0.7	10	0.8	0.7	0.3	200	20.4	20.0				SHMMA	Chimos	A/RKE)	WIRKET	May	Mena	DIRPOM	Contractor Contractor	Stream Tune	Area from Dural Da	A 6d ITOTT RUTAI REGIONAL CURVE
																								TOTALS	200				_									14	a.
																									ws= 9.43		UMP												
_	Notes			MAHA			LTOB				LBKF											LEOW			WI		REOW/SLUMP			RBKF		RTOB	FENCE						WEDA
ELEVATION	(1001)	94.46	75.45	05.48	94.00	93.79	93.61	93.19	92.99	92.77	92.20	91.84	91.63	91.58	91.53	91.59	91.62	91.58	91.53	91.31	90.81	90.52	90.35	90.15	90.13	90.19	90.53	290.67	90.80	92.20	93.33	93.61	93.69	93.72	93.84	93.93	94.00	94.17	
22	1001	0.04	0.00	00.0	0.00	6.21	6.39	6.81	7.01	7.23	7.80	8.16	8.37	8.42	8.47	8.41	8.38	8.42	8.47	8.69	9.19	9.48	9.65	9.85	9.87	9.81	9.47	9.33	9.50	7.80	6.67	6.39	6.31	6.28	6.16	6.07	9	5.83	5.73
(Eact)	400	8 6	8 6	8 9	3 9	900	100	100	100	100	100	100	100	90	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
(Faat)	0.0000	0+03.0	0+050	0.000	0.00	0.00.0	0+08.0	0+08.5	0+09.5	0+10.3	0+11.0	0+12.0	0+14.0	0+16.0	0+17.4	0+18.5	0+20.0	0+210	0+22.0	0+23.3	0+24.0	0+24.7	0+26.0	0+27.5	0+28.2	0+29.2	0+30.0	0+30.7	0+31.0	0+31.4	0+31.6	0+33.0	0+34.2	0+36.6	0+40.0	0+44.0	0+47.4	0+49.0	0+50.0

TOP OF BANK (TOB) Hydraulic Geometry	Depth							1.8 1.6																				
Hyd	Width	(Feet)	0.0	0.5	1.0	0.8	0.7	1.0	2.0	2.0	1.4	1.	1.5	1.0	1.0	1.3	0.7	0.7	1.3	1.5	0.7	1.0	8.0	0.7	0.3	0.4	0.2	1.4

		TA	
		要	人名人
Downstream	7		
Looking			

司	Bank	Potential	in order	Hoderale	MON	MON	moderate	MOI	moderate	modelate						をあるとなり			NAMES OF	TOTAL PROPERTY.	ではる情報		Section 1		STATE OF		を対し
rd Index (BE		and Index		0.81 2.4		200	66 9.9	١.		949				LOOKING DOWNSTEAM						STATE	Se 79 A		1				
Bank Erosion Hazard Index (BEHI)		Criteria						Ü					-	COOK			いというのでは、	Charles and the	No. of Participants of Street, or other Persons of Street,							一は温暖を見	時代の対象が
_			_	Rool	02	Bank 4	Surface	200								100					in di						
(00)	Area	(Sq. Ft.)	0.0	0.1 Root	0.5	0.6 Bank A	0.8	1.6	3.8	4.0	5.9	2.0	2.0	2.1	2.8	1.8	2.1	0.50	2.4	3.5	2.6	2.1	6.0	0.8	0.2	0.2	52.1
Hydraulla Gomesia			0.0 0.0		0.6 0.5 R	0.8 0.6 Bank 4	1.4 0.8 Surface	1.8 1.6	2.0 3.8	2.0 4.0	2.1 2.9	20 2.3	2.0	2.1 2.1		2.8 1.8		- C 40		3.4 3.5	3.1 2.6	2.9 2.1	2.8 0.9	1.4 0.8	0.3 0.2	0.0 0.2	52.1

TW WS 9.32 8.64 10.4 9.43 1.1 0.79 0.012 0.009

		20
	000	45
		40
		38
		30
Cross Section 2 Swartwout Upper Section Riffle-Cross Section	Individual	52
Swar		30
		- 51
		10
		. 40
90	Arbitrary Elevation (feet)	0

Cat Creek Swartwout Property Macon County

Field Crew:	Amanda Todd and George Lankford
River Basin:	Little Tennessee
Watershed:	Cat Creek
Stream Reach:	Swartwout
Drainage Area:	1.2 sq. miles (765.14 acres)
Date:	7/15/2003
Station:	0+43.4
Feature:	POOL

																				L											
NOTES					LTOB AT FENCE					LBKF				LEOW/TW		REOW						RBKF			RTOB						
ELEVATION (FFFT)	99.52	99.42	99.60	99.94	100.18	100.04	100.03	99.65	99.35	98.98	98.64	98.27	97.93	96.66	96.72	97.03	97.74	98.09	98.11	98.27	98.57	98.98	99.55	99.65	100.16	100.17	100.20	100.07	100.11	100.30	100.52
FS	5.21	5.31	5.13	4.79	4.55	4.69	4.70	90.9	5.38	5.75	60.9	6.46	6.80	8.07	8.01	7.70	66.9	6.64	6.62	6.46	6.16	5.75	5.18	5.08	4.57	4.56	4.53	4.66	4.62	4.43	4.21
HI	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73
STATION	0.00+0	0+10.0	0+20.0	0+30.0	0+36.0	0+38.0	0+39.0	0+40.3	0+45.0	0+43.0	0+44.0	0+44.4	0+44.8	0+45.7	0+46.7	0+47.9	0+49.1	0+50.4	0+51.8	0+53.0	0+53.5	0+54.1	0+55.0	0+29.0	0+64.0	0.89+0	0+20.0	0+76.0	0.98+0	0+95.0	1+00.0

Ŧ	BANKFULL (BKF) Hydraulic Geometry	KF)
Width		Area
(Feet)	(Feet)	(Sq. Ft.)
0.0	0.0	0.0
1.0	0.3	0.2
0.4	0.7	0.2
4.0	1.1	0.4
0.9	2.3	1.5
1.0	2.3	2.3
1.2	2.0	2.5
1.2	1.2	1.9
1.3	6.0	4.1
1.4	6.0	1.2
1.2	0.7	6.0
0.5	0.4	0.3
9.0	0.0	0.1
TOTALS 11.1		12.9

	0		9
	9.0	0.0	0.1
TOTALS	11.1		12.9
SUMMAR	MMARY DATA (BANKFULL	NKFULL)	
	A(BKF)	12.9	
	W(BKF)	11.1	
	Max d	2.3	
	Mean d	1.2	

	TOP	TOP OF BANK (TOB)	rob)	
	Hyd	Hydraulic Geometry	etry	
	Width	Depth	Area	
	(Feet)	(Feet)	(Sq. Ft.)	
	0.0	0.0	0.0	_
	2.0	0.1	0.1	
	1.0	0.2	0.1	
	1.3	9.0	0.4	
	1.7	8.0	1.2	
	1.0	1.2	1.0	
	1.0	1.5	1.4	
	0.4	1.9	0.7	
	0.4	2.3	0.8	
	6.0	3.5	2.6	
	1.0	3.5	3.5	
	1.2	3.2	4.0	
	1.2	2.4	3.4	
	1.3	2.1	2.9	
	1.4	2.1	2.9	
	1.2	1.9	2.4	
	0.5	1.6	0.9	
	1.5	9.0	1.7	
	4.0	9.0	2.3	
	5.0	0.0	1.4	
TOTALS	28.0		33.7	_
				,

Root Density (%) 95	Bank Angle (Degrees) 60	Surface Protection (%) 95	Bank Materials silVclay			Pool Cross-Section Lookin		はいないということと 日できるかっち	から ないは はない はない はない ないかい ないかい かいかい かいかい かいか		STATE OF THE PARTY	いているというという	では、 には、 には、 には、 には、 には、 には、 には、 に	では、大きなでは、100mmでは、100		は、一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一		では、これには、これには、これには、これには、これには、これには、これには、これに	とというない。大型の対しと言う		の日本語の記述を持ちない。			というというというというというというというというというというというというというと	リアー・メイン・アンドルマ	は こくくこと アー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
(Sq. Ft.)	0.0	0.1	0.1	0.4	1.2	1.0	1.4	0.7	8.0	2.6	3.5	4.0	3.4	2.9	2.9	2.4	0.9	1.7	2.3	1.4	33.7						
(Feet)	0.0	0.1	0.2	9.0	8.0	1.2	1.5	1.9	2.3	3.5	3.5	3.2	2.4	2.1	2.1	1.9	1.6	9.0	0.5	0.0		SUMMARY DATA (TOB)	33.7	28.0	3.5	1.2	
(Feet)	0.0	2.0	1.0	1.3	1.7	1.0	1.0	0.4	0.4	6.0	1.0	1.2	1.2	1.3	1.4	1.2	0.5	1.5	4.0	5.0	28.0	SUMMARY	A(BKF)	W(BKF)	Max d	Mean d	

Criteria Value Index Potential Root Pepribaria H 1.2.2 41.6 very high Root Density (%) 95 12 very low Root Density (%) 95 12 very low Surface Protection (%) 95 12 very low Surface Protection (%) 95 12 very low Foot Cross-Section Looking Downstream									-
Criteria Value Index	Potoneial	Lorenna	very high	very low	very low	low	very low		moderate
Criteria Value Bank HVBK H 2.2 Root Depthisank H 1 2 Root Depthisank H 2 2 Bank Angle (Degrees) 95 Surface Protection (%) 96 Surface Protection (%) 96 Pool Cross-Section Looki	Indov	Yanıı	8.16	-	1.23	3.9	1.2	5	20.49
Criteria Bank HrBkf Hi Root DepthSank Hi Bank Angle (Degrees) Surface Protection (%) Sank Angle (Degrees) Pool Cross-S	Value	AGIDA	2.2	-	98	09	98	silVclay	
	Criteria	CITTELIA	Bank HVBkf Ht	Root Depth/Bank Ht	Root Density (%)	Bank Angle (Degrees)	Surface Protection (%)	Bank Materials	

Bank Erosion Hazard Index (BEHI)

Cross Section 3 Swartwout Middle Section PoolCross-Section		5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 Station (feet)
9	Arbitrary Elevation (feet)	- 0

Field Crew:	Amanda Todd and George Lankford
River Basin:	Little Tennessee River
Watershed:	Cat Creek
Stream Reach:	Swartwout
Drainage Area.	12 sq. miles (765-19 acres)
Date:	7/15/2003
Station:	0+67
Feature:	RIFFLE

																							140	0.015	1.01					24	P		
	etry	Area	(Sq. Ft.)	0	0.0	0.1	0.2	0.7	9.0	5.9	2.0	1.7	5.9	2.7	-	0.5	0.5	0.5	9.0	17.1		SUMMARY DATA (BANKFULL)	W(FPA)	Slope		Area= A	Width= W	Depth= D	Bankfull= BKF		channel has been modified		
BANKFULL (BKF)	Hydraulic Geometry	Depth	(Feet)	0.0	0.2	0.3	0.4	0.9	4.	2.0	2.4	2.5	2.0	1.2	10	8.0	0.5	0.3	0.0			RY DATA	17.1	17.5	2.7	1.0	17.9	8.0	3	onal Curve	channe		
BANKFI	Hydra	Width	(Feet)	0.0	9.0	9.0	0.5	1.0	7.0	1.7	6.0	0.7	1.3	1.7	1.0	0.5	0.8	1.3	4.4	17.5		SUMMA	A(BKF)	W(BKF)	Max d	Mean d	M/D	Entrenchment	Stream Type	Area from Rural Regional Curve			
								90												TOTALS													
NOTES	Notes	FPA						FENCE LINEATOB			LBKFCIF						LEOW/WS			REOW						RBKFCIF		RTOB	FENCE LINE				FPA
ELEVATION	(Feet)	100.71	99.27	99.27	99.40	52.00	99.81	66.66	99.57	win	11.08	96.93	98.84	98.69	98.21	97.67	97.16	96.68	96.61	97.14	97.91	98.14	98.21	98.66	98.84	99.11	99.62	99.98	99.88	99.82	99.77	100.00	100.71
FS	(Feet)	4.02	5.46	5.46	5.33	5.01	482	474	5.16	5.45	5.62	5.80	5,89	6.04	6.52	7.06	7.57	8.05	8.12	7.59	6.82	69.9	6.52	6.07	5.89	5.62	5.11	4.75	4.85	4.91	4.96	4.73	4 02
Ξ	(Feet)	104.73	104.73	104.73	104.73	104.73	104,73	104.73	104,73	104,73	104.73	104.73	104.73	104.73	104,73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104.73	104 73
STATION	(Feet)	0.000+0	0+12.0	0+22:0	0+32.0	0+42.0	0+45.0	0+81.0	0+54.0	0+55.0	0+55.5	0.560	0+56.5	0+57.0	0.58.0	0+58.7	0+60.4	0+61.3	0+62.0	0+63.3	0+65.0	0.99+0	0+66.5	0+67.3	0+68.6	0+73.0	0+78.0	0+83.0	0+88.0	0.797.0	1+07.0	1+12.0	1+20.0

	2 3	TOP OF BANK (TOB)	0B)
W	Width	Depth	Area
P.	(Feet)	(Feet)	(Sq. Ft.)
o	0.00	0.0	0.0
6	3.00	0.4	9.0
-	1.00	0.7	9.0
0	0.48	6.0	0.4
0	0.52		0.5
0	0.50	1.2	9.0
0	0.50	1.3	9.0
-	1.00	1.8	1.5
0	0.70	2.3	1.4
-	70	2.8	4.4
0	0.90	3.3	2.8
0	0.70	3.4	2.3
_	1.30	2.8	4 D
+	1.70	2.1	4.2
-	1.00	1.9	2.0
0	0.50	1.8	6.0
0	0.80	1.3	1.2
-	1.30	1.2	1.6
4	4.40	6.0	Q.4
5	5.00	0.4	3.1
S	9.00	0.0	1.0
TOTALS 33	32.0		38.2

Bank Erosion	Potentia	high	very low	very low	moderate	very low		wol
	Index	9	-	1.2	4.1	1.45	2	18.75
	Value	1.6	,	98	62	06	Silt/Clay	
	Criteria	Bank HvBkf Ht	Root Depth/Bank Ht	Root Density (%)	Bank Angle (Degrees)	Surface Protection (%)	Bank Materials	

Swartwout Property Cat Creek Macon County, NC

			PEBBLE C		Journey, 140				
Site: Cat C							7/15/2003		
Party: Am	anda Todd	and George	Lankford				Swartwout T	ract Longitu	udinal
				F	Particle Cou	nt			
Inches	Particle	Millimeter		Riffle	Run/Pool		Total No.		Cumulativ
	Silt/Clay	< 0.062	S/C	8	4		12	12%	12%
	Very Fine	.062125	S	5	2		7	7%	19%
	Fine	.12525	Α	22	8		30	30%	49%
	Medium	.2550	N	7	4		11	11%	60%
	Coarse	.50 - 1.0	D	1	0		1	1%	61%
.0408	ery Coars	1.0 - 2.0	S	0	0		0	0%	61%
.0816	Very Fine	2.0 - 4.0		0	0		0	0%	61%
.1622	Fine	4.0 - 5.7	G	1	0		1	1%	62%
.2231	Fine	5.7 - 8.0	R	2	0		2	2%	64%
.3144	Medium	8.0 - 11.3	Α	0	1		1	1%	65%
.4463	Medium	11.3 - 16.0	٧	3	2		5	5%	70%
.6389	Coarse	16.0 - 22.6	E	3	3		6	6%	76%
.89 - 1.26	Coarse	22.6 - 32.0	L	4	1		5	5%	81%
1.26 - 1.77	Very Coars	32.0 - 45.0	S	4	0		4	4%	85%
1		45.0 - 64.0		3	1		4	4%	89%
2.5 - 3.5	Small	64 - 90	С	6	2		8	8%	97%
3 . 5 - 5.0	Small	90 - 128	0	0	1		1	1%	98%
5.0 - 7.1	Large	128 - 180	В	1	0		1	1%	99%
7.1 - 10.1	Large	180 - 256	L	0	1		1	1%	100%
10.1 - 14.3	Small	256 - 362	В	0	0		0	0%	100%
14.3 - 20	Small	362 - 512	L	0	0		0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0		0	0%	100%
40 - 80	rg- Very Lr	1024 - 2048	R	0	0		0	0%	100%
	Bedrock		BDRK	0	0		0	0%	100%
	10000000		Totals	70	30		100	100%	100%

UT1 Cat Creek Swartwout Property Macon County

	Step Slope											6	0.055													
	Step Length St											6	30.0													
	Run Slope	0.0111	0.0084	0.000		0.0409			1	0.0227		0.0204			0.0215						Run Slope	0.0110	0.0440	0.0240	0.5159	2.0638
	Run Length	18	42	7		Ξ				22		23			13						Run Length	11	23	17		
NOTE cane fence post	Riffle Slope		0.1000	0.0300					0.0183		0.0046			0.0053							Riffle Slope	0.0000	0.1000	0.0400	0.4221	.000
ELEV 100.00 93.08 94.72	Riffle Length	•	-	17					24		13			17							Riffle Length	-	24	13		
FS 6.92 0.92	Max Pool Depth Pool Slope						0.0043									0.0042					Pool Slope	0.0070	0.0110	0.0080	0.3283	0070
HI 100 100 95.64 94.72	Max Pool Depth																1.90			Max Pool	Depth	1.90	1.90	1.90		
8S 0.00 2.56	Pool Length						21									19					Pool Length	19	21	20		
STA E TBM#1 TP#1 TP#2	췹																				d-d	43	91	68	2.7	
	Bk Ht/Bkf Ht.	1.68		1.14	1.31				1.50			1.10			1.34			00	n , - 1		Bk HVBkf Ht.	1.10	1.68	1.35	AN	***
	≡ 100 001	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.001	100.00	100.00	100.00	100.00	95.64	95.64	95.64	95.64	95.64	95.64							
	Notes Top Riffle	run	riffle	run	riffle CS	nun	lood dol	max pool	top riffle/run	run		run	step	riffle		top pool	max pool		pool CS top riffle			min	max	BAB	Min ratio	***
	108	97.18		95.69	95.72				94.74			93.51		92.17	91.84			4.0	31.18							
	TOB (FS)	2.82		4.31	4.28				5.26			6.49		3.47	3.80			03.4	4.52							
	BKF	95.70		95.34	95.04				93.82			93.29			91.08			90	90.04			0.02211				
	BKF (FS)	4.30		4.66	4.96				6.18			6.71			4.56			9	00.0			bkf slope 0.02211				
	SN S	93.78	93.58	93.52	93.00	92.91	92.46	92.46	92.37	91.93	91.43	91.37	90.90	89.25	89.16	88.88	88.88	19.99	88.80			0.0213				
Little Tenessee 1.086 7721/2003 LONGITUDINAL PROFILE	WS (FS)	6.22	6.42	6.58	7.00	7.09	7.54	7.54	7.63	8.07	8.57	8.63	9.10	6.39	6.48	97.9	6.76	0.77	6.84			ws slope 0.0213				
Little Tenessee UT Cat Creek (UT1) 772/12003 LONGITUDINAL PROFILE	₩1 93.77	93.51	92.81	92.88	92.85	92.50	91.74	91.71	91.97	91.69	91.15	91.05	90.59	88.91	88.83	88.38	87.94	88.10	88.49			0.0211		16.0	1.3	
	TW (FS)	6.49	7.19	7.12	7.15	7.50	8.26	8.29	8.03	8.31	8.85	8.95	9.41	6.73	6.81	7.26	7.70	4.5	7.15			tw slope 0.0211		BKF W (ft)=	F D (ft)=	-
River Basin: Stream Reach: Dralange Area: Date: Description:	Station I	0.60+0	0+27.0	0+40.0	0+48.5	0+27.0	0+68.0	0+72.0	0.68+0	1+13.0	1+35.0	1+48.0	1+71.0	2+01.0	2+18.0	2+31.0	2+33.4	2+37.0	2+50.0					BKF	BK	DIVE 144

Amenda Tool and George Lankford Information Informatio

NOTES	below road			LTOB	LBKF					LEOW/ws	W		REOW				RBKF		RTOB			
ELEVATION	96.25	96.07	96.87	96.72	96.04	194.61	94.16	94.11	93.69	93.12	92.85	93.03	93.22	93.90	94.13	94.51	96.06	96.45	96.73	95.50	96.36	96.07
FS	375	3.93	4.13	4.28	98.4	5.49	5,85	5.89	6.31	6.88	7.15	6.97	6.78	6.10	5.87	5,49	4	4,65	4.27	4,50	4.84	3.93
HI (FEET)	190.00	imm	100.00	100.00	imm	100.00	100,00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100,00	Imm	100.00	mml	mm	imm
STATION	0.00+0	0+00.5	0+02.0	0+04.2	0.90+0	D+07.5	0.60+0	D+10,5	0+11.3	0+12.3	0+14.4	0+16.0	0+17.4	0+18.9	0+20.0	0+21.0	0+22.0	0+24.0	0+28:0	0+34.0	0.439.0	0+55.0

BA	BANKFULL (BKF)	KF)
Hydr	Hydraulic Geometry	retry
Width	Depth	Area
Feet)	(Feet)	(Sq. Ft.)
0.0	0.0	0.0
	0.5	0.4
10	6.0	1.1
10	6.0	1.4
m	1.4	6.0
	1.9	1.6
2.1	2.2	4.3
"	2.0	3.4
1.4	1.8	2.7
2	1.1	2.2
_	6.0	1.1
1.0	0.5	0.7
0	0.0	0.3
16.0		20.1

20.1 W	ANKFULL)	
	V(FPA)	
W(BKF) 16.0 S	Slope	0.02
Max d 2.2 Sir	inuosity	1.06
Mean d 1.25	Area= A	
W/D 12.8	Width= W	
Entrenchment 3.4	Depth= D	
Stream Type Cb B	Bankfull= BKF	n

1.38

5.10

0.27

roB)	etry	Area	(Sq. Ft.)	0.0	9.0	1.4	2.1	2.4	1.5	2.3	5.7	4.4	3.6	3.2	1.9	1.4	0.9	6.0	9.0	33.1
TOP OF BANK (TOB)	Hydraulic Geometry	Depth	(Feet)	0.0	0.7	1.2	1.6	1.6	2.0	2.6	2.9	2.7	2.5	1.8	1.6	1.2	0.7	0.3	0.0	
TOP	Hyd	Width	(Feet)	0.0	1.8	1.5	1.5	1.5	8.0	1.0	2.1	1.6	1.4	1.5	1.1	1.0	1.0	2.0	5.0	24 R

(TA (TOB)	33.1	24.8	2.9	13
SUMMARY DAT		W(BKF)	Max d	Mean d

Bank Erosio	n Hazard Is	ndex (BEHI)	
			Bank Erosion
Criteria	Value	Index	Potential
Bank HVBkf Ht	1.72	6.5	high
Root Depth/Bank Ht	-	-	very low
Root Density (%)	90	1.45	very low
Bank Angle (Degrees)	70	5.8	moderate
Surface Protection (%)	95	1.2	very low
Bank Materials	silVclay	10	
		25.95	moderate

Field Crew:	Amanda Todd and George Lankford
River Basin:	Little Tennessee
Watershed:	UT Cat Creek
Stream Reach:	Swartwout UT1
Drainage Area:	0.86 sq mi (551.15 acres)
Date:	7/15/2003
Station:	2+72
Feature:	POOL

			_								_	_		_						full)					
(F)	Area	(Sq. Ft.)	0	0.3	1.4	6.0	5.6	9.0	2.4	6.0	2,7	6.0	0.7	0.3	0.2	0.1	16.3			ATA (Bank	16.3	11.8	2.4	1.4	
BANKFULL (BKF)	nyuraulic Geometry	(Feet)	0	9.0	1.0	1.5	1.9	2.4	24	23	9	1.1	0.9	9.0	0.2	0.0				SUMMARY DATA (Bankfull)	A(BKF)	W(BKF)	Maxd	Mean d	
BA	Width	(Feet)	0	1.0	1.8	0.7	1.5	0.3	1.0	1.4	5.5	9.0	0.7	0.4	9.0	9.0	11.8			S					
			_							ws= 6.77															,
NOTES			LTOB	LBKF				LEW		Z.		REW					RBKF	RTOB							
ELEVATION	91.95	91.54	91.31	90.60	90.05	89.64	89.12	88.68	88.19	88.18	88.31	88.71	89.47	89.73	90.03	90.38	90.60	91.08	91.19	91.13	90.65	90.35	90.39	90.82	91.92
22 3	1.88°	4,06	4.29	5.00	2.55	5.96	6.48	6.92	7.41	7.42	7.29	6.89	6.13	5.87	5.67	5.22	5.00	4.52	4.41	4.47	4.96	5.25	6.21	4.78	3,68
H (Food)	05 RT	09'96	96.80	96.60	95.00	95.60	96.80	95.60	96.80	mas	95,80	Val.	96.80	00'98	95.60	96.60	95.80	95.80	86.60	96:60	95,60	95,60	95.80	95.80	96.60
STATION	Defin n	0+10,0	0+12.0	0+14.0	0+15.0	0+16.8	0+17.5	0+19.0	0+19.3	0+20,3	0+21.7	0+23.0	0+23.6	0+24.3	0+24.7	0+25.3	0+25.8	0+27.0	0+33.0	0+36.5	0+40.0	0+47.0	0+55.0	0+28.0	0+68.0

Width Fpa=68

	₽₹	TOP OF BANK (TOB) Hydraulic Geometry	OB) etry
		Depth	
	(Feet)	(Feet)	(Sq. Ft.)
	1.0	0.7	0.4
	1.8	1.3	1.8
	0.7	1.7	1.0
	1.5	2.2	2.9
	0.3	2.6	0.7
	1.0	3.1	2.9
	1.4	3.1	4.4
_	1.3	3.0	4.0
_	9.0	2.6	1.7
	0.7	1.8	1.6
	0.4	1.6	0.7
	9.0	1.3	6.0
	0.5	6.0	9.0
	1.2	0.7	1.0
TOTALS	15.0		24.3

Bank Erosion Hazard Index (BEHI)

Width Depth Area (Feet) Cond 10.4 10.0 0.7 10.0 0.7 10.15 2.2 2.9 10.3 2.6 0.7 10.0 3.1 2.9 10.1 3.1 4.4 11.3 3.0 4.0 0.6 2.5 1.7 10.0 3.1 2.9 10.0 3.1 2.9 10.0 3.1 2.9 10.0 3.1 2.9	Depth (Peet) (Pe	Width Depth (Feet) [Feet] 20 10 10 10 118 0.7 11.5 0.3 2.6 0.3 2.6 0.3 1.4 3.1 1.4 3.1 1.6 0.6 1.2 0.0 1.2 0.7 1.1.8 0.6 1.2 0.7 1.1.8 0.6 1.2 0.7 1.6	(Feed) 20 10 10 10 118 0.7 114 114 114 114 115 0.6 0.6 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	_	Hydr	Hydraulic Geometry	itry
(Feet) 0.0 0.7 1.3 1.7 2.2 2.6 3.1 3.1 3.1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1	(Feet) 0.0 0.0 1.3 1.3 2.2 2.2 2.3 3.1 2.8 2.8 2.8 2.8 3.1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1	(Feet) (Feet) 20 00 00 00 00 00 00 00 00 00 00 00 00	(Feet) (F	_	Width	Depth	Area
000 1.7 1.7 2.2 2.6 3.1 1.8 1.8 1.8	0.0 0.0 1.3 2.2 2.6 2.6 3.1 1.8 1.8 1.8	20 00 110 07 118 113 20 00 110 07 117 117 117 117 117 117 117	100 000 000 000 000 000 000 000 000 000		(Feet)	(Feet)	(Sq. Ft.)
07 1.13 2.22 2.22 3.3 3.3 1.8 1.8	07 222 222 331 168 168	10 07 10 07 10 07 10 07 10 10 10 10 10 10 10 10 10 10 10 10 10	10 07 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	_	2.0	0.0	0.0
1.3 2.2.2 3.3 3.1 1.8 6.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	1.3 2.2 2.2 2.2 2.2 2.2 2.2 2.3 3.1 1.8 8.3 1.1 1.8 1.8 1.1 1.8 1.1 1.1 1.1 1.1 1.1	18 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	18 113 113 113 113 113 113 113 113 113 1	_	1.0	0.7	0.4
2.2.2.2.2.2.2.3.3.3.3.3.1.1.2.3.0.1.1.2.0.1.1.2.0.1.1.2.0.1.1.2.0.1.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.1.2.0.0.0.1.2.0.0.0.0	2.2.2.2.2.2.2.2.3.3.1.2.2.3.3.1.1.8.8.1.1.8.1.1.8.1.1.8.1.1.8.1	15 22 26 26 26 26 26 26 26 26 27 26 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	107 177 177 177 177 177 177 177 177 177	_	1.8	1.3	1.8
2.2 3.3.3.1 2.3.0.1 1.8.6.0	2.2.2 3.3.3.3.1 1.8.6.5 1.8.6 1.8.6.5 1.8.6.5 1.8.6.5 1.8.6.5 1.8.6.5 1.8.6.5 1.8.6.5 1.8.6.5	15 22 03 2 56 11.4 3.1 13.4 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	15 22 26 11 12 21 12 12 12 12 12 12 12 12 12 12		0.7	1.7	1.0
2.88 2.3.3.1 2.8.0.0.1 2.8.0.0.1	2.6 3.1 2.2 2.0 1.6 6.0 1.6 1.6 1.6	0.3 2.6 1.0 3.1 1.3 3.0 0.7 1.8 0.6 1.3 0.6 1.3 1.2 0.7	103 25 110 31 114 31 113 30 113 30 114 30 115 00 112 07 115 07 11		1.5	2.2	2.9
2 8 8 8 5 1 2 9 8 5 1 5 0 8 8	3.1 2.0 2.0 2.0 2.0 3.1 3.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	10 31 114 31 113 30 0.6 2.6 0.4 1.6 0.6 13 12 0.7	110 311 114 311 115 320 0.6 128 0.7 188 0.6 13 0.5 0.9 11.2 0.7 11.2 0.7 15.0 SUMMARY DATA IT ARKY DATA IT WREY DATA IT MAKE SUMMARY SUMARY SUMMARY SUMARY SUMARY S	_	0.3	2.6	0.7
2.9.3.± 2.0.0.± 8.6.0.±	2.3.3.1.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	134 331 134 30 06 26 07 18 06 13 08 13 1.2 0,7	114 31 113 30 00 17 18 004 116 005 113 005 09 112 07 150 1180 1180 1180 1180 1180 1180 1180 1		1.0	3.1	2.9
3.0 2.6 1.8	2.3.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	13 20 0.6 2.6 0.7 1.8 0.4 1.6 0.5 0.9 1.2 0.7	13 26 26 07 18 00 00 00 00 00 00 00 00 00 00 00 00 00		1.4	3.1	4.4
2.6	1.8	0.6 2.6 0.7 1.8 0.4 0.5 0.9 0.7 1.2 0.7 1.5 0.	06 26 07 18 00 00 00 00 00 00 00 00 00 00 00 00 00	_	1.3	3.0	4.0
1.8	1.8	0.7 1.8 0.4 1.6 0.6 1.3 0.5 0.9 1.2 0.7 1.5 0.	0.7 1.8 0.6 1.3 0.6 0.9 1.2 0.7 1.2 0.7 1.50 SUMMARY DATA (T SUMMARY DATA (T SUMMARY DATA (T SUMMARY DATA (T SUMBKF) 15.0 Max d 3.1	_	9.0	2.6	1.7
	1.6	0.4 1.6 0.6 1.3 0.5 0.9 1.2 0.7 15.0	0.4 1.5 0.5 1.3 0.5 0.9 1.2 0.7 15.0 SUMMARY DATA (T ARKF) 24.3 W(BKF) 15.0 Max 4 3.1 1.50	_	0.7	1.8	1.6
1.3		1.2 0.7	15.0 0.7 15.0 15.0 15.0 NW RKF DATA (T A R R K F) 24.3 NW RKF) 15.0 NW RX d 3.1 15.0 NW A MAX d 3.1 15.0		0.5	6.0	9.0
1.3	6.0	15.0	15.0 SUMMARY DATA (T A(BKF) 24.3 W(BKF) 15.0 Max d 3.1		1.2	0.7	1.0
1.3 0.9 0.7	0.9	15.0	24.3 24.3 15.0 3.1				
1.3 0.9 0.7	0.9		24.3 24.3 15.0	ALS	15.0		24.3
0.6 1.3 0.9 1.2 0.7 1.5 1.50 SIIMMARY DATA (TOR)	1.2 0.7 1.2 0.7 15.0 15.0					100	
0.6 1.3 0.5 0.9 1.2 0.7 15.0 15.0 AMMARY DATA (TOB) AMMARY DATA (TOB)	0.5 0.9 1.2 0.7 15.0 15.0 15.0 AIBKT DATA (TOB)	24.3	e ·		W(BKF)	15.0	
06 13 09 12 1.2 0.7 1.50 SWHATP DATA (TOB) WHKP) 243 WHK	0.5 0.9 1.2 0.7 15.0 SUMMARY DATA (TOB) A(BKF) 24.3 W(BKF) 15.0	24.3			Max d	3.1	
06 13 05 07 12 0.7 15.0 15.0 8UMMARY DATA (TOB) A(BKF) 24.3 WBKF) 15.0 MBK 31.1	05 09 1.2 0.7 15.0 15.0 SUMMARY DATA (TOB) A(6KF) 24.3 WIRKF) 15.0 Max d 3.1	24.3 15.0 3.1			Mean d	1.6	

		70
		65
		09
		92
		909
		45
6 ion		40
Cross Section 6 Swartwout UT1 Pool Cross Section		35 Station (feet)
		30
		25
	Bankfull	50
		15
		- 01
		. 2
	Arbitrary Elevation (feet)	0

UT1 Cat Creek Swartwout Property Macon County

			PEBBLE C	OUNT	-				
Site: Cat C	reek						7/21/2003		
Party: Ama	anda Todd	and George	Lankford				Swartwout Ti	ract UT1 L	ongitudinal
					article Cou	nt			
Inches	Particle	Millimeter		Riffle	Run/Pool		Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	12	9		21	21%	21%
	Very Fine	.062125	S	5	4		9	9%	30%
	Fine	.12525	Α	10	9		19	19%	49%
	Medium	.2550	N	4	2		6	6%	55%
	Coarse	.50 - 1.0	D	0	2		2	2%	57%
.0408	/ery Coars	1.0 - 2.0	S	0	0		0	0%	57%
.0816	Very Fine	2.0 - 4.0		1	0		1	1%	58%
.1622	Fine	4.0 - 5.7	G	0	1		1	1%	59%
.2231	Fine	5.7 - 8.0	R	1	0		1	1%	60%
.3144	Medium	8.0 - 11.3	Α	2	2		4	4%	64%
.4463	Medium	11.3 - 16.0	V	0	0		0	0%	64%
.6389	Coarse	16.0 - 22.6	Ε	4	2		6	6%	70%
.89 - 1.26	Coarse	22.6 - 32.0	L	1	2		3	3%	73%
1.26 - 1.77	ery Coarse	32.0 - 45.0	S	4	1		5	5%	78%
1.77 - 2.5	ery Coarse	45.0 - 64.0		2	1		3	3%	81%
2.5 - 3.5	Small	64 - 90	С	5	1		6	6%	87%
3.5 - 5.0	Small	90 - 128	0	8	3		11	11%	98%
5.0 - 7.1	Large	128 - 180	В	1	1		2	2%	100%
7.1 - 10.1	Large	180 - 256	L	0	0		0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0	0		0	0%	100%
14.3 - 20	Small	362 - 512	L	0	0		0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0		0	0%	100%
40 - 80	.rg- Very Lr	1024 - 2048	R	0	0		0	0%	100%
	Bedrock		BDRK	0	0		0	0%	100%
			Totals	60	40		100	100%	100%

																											900
1	Slope							0.0088			0.0083			0.0036				0.0044		Glide	Slope	01000	00000	0.0030	0 1296	0 6481	0 4600
1	Length							00			9			11				a									
	Slope				0.0121															Run	Slope	0.0000	0,100	0.0120	0.7400	2 2600	1.6100
	Length			-	3/															Run	Length	37	20	3/			
NOTE	Slope 0.0085			0.0194					0.0119			0.0062			0.0074					Riffle	Slope	0,000	00110	0.0140	0.8074	1.9500	1 5000
100.00 98.94 98.94	Length 68.5			17					36			16			19					Riffle	Length	91	000	31			
4.8 3.09 3.7	Slope		0.0007		0.0067				0.0068	200		00000	0.0038			00000	0,0040			Pool	Slope	00000	0.0040	0.0020	0.0000	0.4700	0.2200
HI 103.74 102.03 103.7 100	Depth		4	0																	Depth						
BS 3.74 3.09 4.76	length		6		44				34			3.6	17			36	G.			Pool	Length	17	0 0	35			000
STA TBM #1 TP #1 TP #2	쉽		8		88				46	2		0.0	3								4	24.5	3	2	00	4.7	3.1
	BK H	1.01		2	1 38				1.63	3						171	35		131	Bk HU	Bkf Ht.	101	20	1.3/	2	¥	Ä
	103.74	103.74	103.74	103 74	103.74	103.74	103 74	103.74	103.74	102.03	102.03	102.03	102 03	102.03	102.03	102.03	102.03	102.03	102 03								
	Notes Top Ruffle	Flow Gate intermediate	Top Pool Drain Tile	Top Riffle	Top Pool	Pool	Pool	Glide	Top Riffle	Pool	Top Glide	Top Riffle	Pool	Top Glide	Top Riffle	Kille CS	intermediate	Top Glide	Riffle			UNU	max	gva	Min ratio	Max ratio	avg ratio
		98.64	93 00	0 0	98.35				08 63							2000	90.90		99 98								
	TOB (FS)	5.10	9	2 ;	5.39				6.31							200	2		5.37								
	BKF	98.04	07 70	0 0	97.09				25 30							80.08	0000		92.62								
	BKF (FS)	5.70	90 9	2	6.65				7.40							0 10	100		6.38								
	WS 85.86	95.28	95.13	95.10	94.33	94.11	94 09	94.08	94.01	93.48	93.44	83.38	93.28	93.21	93.17	83.03	92.97	92.93	85.88		0.00073	2000					
unanda Todd, George Lankford Bille Ternesse over Cat Creek Waldroop Traci 63 721/2003 ONGITUDINAL PROFILE	WS (FS) 7.88	8.46	8.61 8.61	20.00	9.41	9.63	9.65	99.6	10.16	8.55	8 59	200	8 75	8.82	8.86	8 8	90.8	9.10	41.0			ws stope or on a					
Amenda Todd, George Lani Litte Termesse Lover Cat Creek Waldroop 2.53 7721/2003 LONGITUDINAL PROFILE	₹88 86.54	94.93	94.44 94.03	94.66	93.77	93.11	92.73	93.71	93.77	92.77	82.79	83.05	92.43	92.46	92.84	82.62	92.02	92.19	92.39		0 0000	79000		•	1.1		
##	1W (FS)	9.22	9.70	90.6	0.97	10.63	11.01	10.03	10 88	9.26	9.24	8.88	10.70	9.57	9.19	17.6	10.01	9.84	20			м вюре	. 144 146	ENT W (II)	P D (II)	x D (11)=	
Field Crew: River Basin: Stream Reach; Dralange Area: Date: Description:	Station 0+00.0		0+720	1+130	1+66.5	1+84.0	2+00.0	2+10.0	2+18.0	2+63.0	2+78.0	2+84.0	3+11.0	3+21.0	3+32.0	346.0	3+620	3+76.0	3+85.0				9779	Na	NA .	BKF Ma	

Field Crew:	Amanda Todd, George Lankford
River Basin:	Little Tenessee
Stream Reach:	Cat Creek
Dralange Area:	2.20
Dahe:	7/21/2003
Station:	NA
The section of	The same of the sa

STATION	Ī	FS	ELEVATION	NOTES		
(FEET)	(FEET)	(FEET)	(FEET)			
0.00.0	103.74	5.59	98.15			
0+21.0	103.74	5.64	98.10			
0+26.0	103.74	5.76	97.98			
0+29.0	103.74	5.87	18.76			
0+33.0	103.74	60.9	97.65			
0+37.0	103.74	5.98	97.76			
0+45.0	103.74	5.93	18.78			
0-47.0	103.74	5.86	97.88			
0+51.0	103.74	5.79	97.95			
0.55.0	103.74	5.97	77.78	LTOB		
0+57.0	103.74	6.18	97.56			
0.08+0	103.74	6.63	97.11	EDGE OF HORSE PASTURE	PASTURE	
0+61.0	103.74	6.89	96.85			
0+62.0	103.74	7.08	99.96			
0+63.0	103.74	7.31	96.43		Wfpa = 102.5	
0+84.0	103.74	7.56	96.18			
0.99+0	103.74	7.67	20'96	LBKF		
0+66.8	103.74	7.89	95.85			
0+68.0	103.74	8.06	95.68			
0.69-0	103.74	8.20	95.54			
0.07+0	103.74	8.33	95.41			
0+70.9	103.74	8.42	95.32			
0+72.0	103.74	8.73	95.01			
0+73.0	103.74	8.83	94.85			
0+74.2	103.74	9.13	94.61	TIB		
0+75.5	103.74	97.6	94.48			
0+76.3	103.74	8.58	94.15			TOTAL
0-77.0	103.74	9.95	93.79	LEOW		
0+77.8	103.74	10.40	93.34	I.W.	ws=9.91	
0.67+0	103.74	10.36	93.38			
0.980.0	103.74	10.28	93.46			
0+81.3	103.74	10.32	93.42			
0+81.7	103.74	9.91	93.83	REOW		
1.28-0	103.74	97.0	94.26			
0.03.4	103.74	9.12	34.02			
0+843	103.74	8 04	95.70			
0+850	103 74	7.65	86.09	RBKF		SUMMARY DA
0+85.3	103.74	7.56	96.18			
0+86.0	103.74	7.31	96.43			A/BKF
0.487.0	103.74	7.12	96.62			W(BKF
0+89.3	103.74	6.77	26.96			Max
0+90.5	103.74	6.46	97.28			Mean
0+92.3	103.74	6.04	97.70	FENCE/RTOB		J/M
0+83.0	103.74	5.97	17.78			Entrenchmer
0.96.0	103.74	5.79	97.95			Stream Typ
0.66+0	103.74	5.57	98.17		Area from Rural Regional Curve	Regional Curv

_		TOB	
_		Hydraulic Geometry	etry
_	Width	Depth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
_	2.0	0.3	0.3
_	3.0	0.5	1.1
_	1.0	0.7	9.0
_	1.0	6.0	0.8
_	1.0	1.0	1.0
_	1.0	1.3	1.2
	2.0	4	2.7
_	8.0	1.6	1.2
_	1.2	1.7	2.0
_	1.0	1.8	1.7
_	1.0	2.1	1.9
_	6.0	2.3	2.0
_	1.1	2.5	2.6
_	1.0	2.6	2.6
_	1.2	3.0	3.4
	1.3	3.3	4.1
_	8.0	3.8	2.8
	7.0	3.7	2.6
	8.0	3.7	3.0
	1.2	3.7	4.4
_	1.0	3.3	3.5
	1.3	5.9	4.0
_	0.4	2.5	1.1
	1.0	1.9	2.2
	0.7	1.4	1.2
_	0.4	1.0	0.5
	9.0	0.7	0.4
	0.7	0.5	0.4
	1.0	0.1	0.3
OTALS	31.0	100000000000000000000000000000000000000	55.3

			_	7	2
				505	3
	1			- 00	
	1		Bankfuli	ç	3
	1			5	2
		1		- «	3
				2	3
		-	Ĵ	K	2
			1	5	2
		1		- «	3
		1			
Upper Waldroop Tract Riffle Cross-Section	1			"	Station (feet)
Upper Wale	1				
				4	?
-	1			Q	?
				,	3
	+			= 5	3
				, K	2
				8	2
				ř.	2
					2
				· · · · ·)

	0.	Bank Erosion	Potential	righ	wery low	high	very low			moderate		100	CONTRACTOR OF	1				No. of the last					- The state of the	・信信的時	1000000		*				
	ndex (BEH		Index	6.95	- 00	6.9	1.9	10	0	29.05		100	286				1	110													
	Hazard I		Value	1.8	1 26	85	80	SilVClay	ı				K	日を	馬山		新作		19		Y	N.		T A							
	Bank Erosion Hazard Index (BEHI)			Bank HVBkf Ht	Root Depth/Bank Ht	Rank Angle (Degrees)			Stratification			からとうという		には、日本語の数でする	いておというと言うと	りたが、大学を行る			The state of the s		TOTAL STATE OF THE PARTY OF THE	TO A STATE OF THE PARTY OF THE	では、一般の一般など		36		THE PERSON NAMED IN			The second second	
		roa)	etry	Area	(Sq. Ft.)	0.0	0.9	0.7	12	6.0	9.1	080	4.4	4.6	10.1	6.3	4.2	5.9	9.0	1.7	0.8	0.4	57.7								
		TOP OF BANK (TOB)	Hydraulic Geometry	Depth	(Feet)	0.0	0.7	1.2	1.7	2.1	5.6	5. A	4.6	4.6	4.2	4.2	3.4	5.9	2.0	1.3	0.7	0.0			A (TOB)	57.7	21.0	0.4	7.7		
		TOP C	Hydra	Width	(Feet)	0.0	1.7	0.7	8.0	0.5	0.0	20	1.0	1.0	2.3	1.5	1.1	1.9	0.0	1.0	0.8	1.0	TOTALS 21.0		SUMMARY DATA (TOB	A(BKF)	W(BKF)	Max d	Disposit		
		BANKFULL (BKF)	drau	Depth	f) (F	0.7 0.5 0.2	1.0	1.4	1.8	3.1	2.0 3.5 6.6	3.5	3.5		2.7	2.1	1.9	1.3	0.0	200					100	V	A(BKF) 44.0		Meand 2.5		
																		ws=8.61													
	NOTES								FENCE	LTOB	100	LBN					LEOW	M			REOW					RKBF	KIOB				FENCE
serty	ELEVATION	(Feet)	98.87	98.97	99.15	99.16	98.81	98.33	98.53	98.50	98.17	97.27	96.81	96.39	95.94	29.64	94.32	93.86	93.92	94.28	95.11	95.64	95.86	96.45	97.19	97.79	198.47	90.01	99.17	99.60	99.56
Cat Creek Waldroop Proper 2.5 sq ml 7/18/2003 0+81.5 POOL	FS	(Feet)	4.87	4.77	4.59	85.4	4.93	5.41	5.21	5.24	79.0	6.47	6.93	7.35	7.80	9.10	9.42	90.0	9.05	9.46	8.63	8.1	7.88	7.29	6.55	5.95	17.5	4.93	4.57	4.14	4.18
	Ξ	(Feet)	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74	103.74
Watershed: Stream Reach: Drainage Area: Date: Station: Feature:	STATION	(Feet)	0.00+0	0+02.0	0+14.0	0+27.0	0+29.2	0+30.9	0+33.7	0+35.0	0+36.0	0+38.4	0+39.2	0+39.7	0+40.5	0+41.2	0+43.2	0+44.2	0+47.5	0+49.0	0+50.1	0+52.0	0+53.0	0+53.2	0+54.2	0+55.0	0.55.0	0.450	0+61.7	0+63.0	0+64.5

Field Crew:	Amanda Todd and George Lankford
River Basin:	Little Tennessee
Watershed:	Cat Creek
Stream Reach:	Waldroop Property
Drainage Area:	2.5 sq mi (1,619 acres)
Date:	7/18/2003
Station:	NA
Feature:	Riffle (Staion 3+33.4)

	(F)	etry	Area	(Sq. Ft.)	0.0	0.1	0.2	0.1	9.0	1.2	1.8	0.2	0.3	9.9	8.7	5.9	9.6	0.0	2.2	6.0	0.2	9.0	0.1	0.1	0.0	39.1			100	0.008	1.01	-	>	
	BANKFULL (BKF)	Hydraulic Geometry	Depth	(Feet)	0.0	0.1	0.1	0.2	7.0	1.2	1.7	2.2	2.8	2.9	2.9	2.9	2.7	2.6	2.2	1.2	6.0	0.4	0.2	0.0	0.0			SANKFULL)	W(FPA)	Slope	Sinuosity	Area= A	Width= W	0
	BAI	Hydr	Width	(Feet)	0.0	2.0	2.0	8.0	1.2	1.3	1.2	0.1	0.1	2.3	3.0	2.0	3.4	0.0	6.0	9.0	0.2	1.0	0.3	0.5	0.1	22.9		SUMMARY DATA (BANKFUI	39.1	22.9	5.9	1.7	13.4	0
																2.71	3.79									TOTALS	1	SUMMA	A(BKF)	W(BKF)	Max d	Mean d	W/D	and the same
						FENCE			<u>a</u>										ws=8.88															-
NOTES						LTOB			LBKF LINTP								LEW		M		REW								RBKF		RTOB	FENCE		
ELEVATION	(Feet)	96.92	96.80	29.96	96.61	96.51	96.14	95.88	95.75	95.68	95.64	95.53	95.05	94.55	94.02	93.57	92.93	92.87	92.82	92.83	93.03	93.15	93.52	94.55	94.86	95.35	95.53	95.72	95.75	95.88	96.41	97.40		
FS	(Feet)	5.11	5.23	5.36	5.42	5.52	5.89	6.15	6.28	6.35	6.39	6.50	86.9	7.48	8.01	8.46	9.10	9.16	9.21	9.20	9.00	8.88	8.51	7.48	7.17	6.68	6.50	6.31	6.28	6.15	5.62	4.63		
Ξ	(Feet)	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03	102.03		
STATION	(Feet)	0.00+0	0+10.0	0+22.0	0+30.0	0+35.4	0+38.0	0+40.0	0+44.0	0+46.0	0+48.0	0+48.8	0+20.0	0+51.3	0+52.5	0+52.6	0+52.7	0+55.0	0+58.0	0.09+0	0+63.4	0+63.4	0+64.3	0+64.8	0+65.0	0.99+0	0+66.3	0+66.8	6.99+0	0+67.3	0+68.0	9 69+0		

	P T	Top of Bank (TOB)	(0B)	Bank Erosi
		naniic Georg	, inem	
	Width	Depth	Area	Criteria
	(reet)	(reet)	(3q. Pt.)	Bank HVBkf H
	0	0	0	Root Depth/Bank H
	2.6	0.4	0.5	Root Density (%
	2.0	9.0	1.0	Bank Angle (Degrees
	4.0	8.0	2.8	Surface Protection (%
	2.0	0.8	1.6	Bank Materials
	2.0	6.0	1.7	Stratification
	0.8	1.0	0.7	
	1.2	1.5	1.5	
	1.3	2.0	2.2	
	1.2	2.5	2.7	
	0.1	2.9	0.3	
	0.1	3.6	0.3	
	2.3	3.6	8.3	
	3.0	3.7	11.0	A CONTRACTOR OF THE PARTY OF TH
	2.0	3.7	7.4	がはなる。他には
	3.4	3.5	12.2	一年 一日
	0.0	3.4	0.0	THE RESERVE OF THE PARTY OF THE
	6.0	3.0	2.9	の は 一般 は 一般 ない ない
	0.5	2.0	1.2	
	0.2	1.7	0.4	日本 人の一人の一人の一人の一人の一人の一人の一人の一人の一人の一人の一人の一人の一人
	1.0	1.2	1.4	
	0.3	1.0	0.3	がいている。とは、一般などのでき
	0.5	0.8	0.4	
	0.5	9.0	0.4	
	0.7	0.1	0.3	一 は連続
TOTALS	32.6		61.3	
				間になる はない

Y DATA (TOB)	A(BKF) 61.3	BKF) 32.6		91 has
SUMMARY DA	A(BI	W(B	Ma	Mea

CS Looking Downstream

Cat Creek Lower Waldroop Property Macon County

			PEBBLE C	OUNT					
Site: Cat C	reek						7/18/2003	ı	
Party: Am	anda Todd	and George	Lankford				Lower Waldr	oop Tract L	ongitudinal
				F	article Cou	nt			
Inches	Particle	Millimeter		Riffle	Run/Pool		Total No.	Item %	, Cumulati
	Silt/Clay	< 0.062	SIC	1	1		2	2%	2%
	Very Fine	.062125	S	0	0		0	0%	2%
	Fine	.12525	Α	11	6		17	17%	19%
	Medium	.25 • .50	N	11	16		27	27%	46%
	Coarse	. 50 - 1.0	D	2	8		10	10%	56%
.0408	ery Coars	1.0 - 2.0	S	0	1		1	1%	57%
.0816	Very Fine	2.0 - 4.0		1	0		1	1%	58%
.1622	Fine	4.0 - 5.7	G	5	1		6	6%	64%
.22 - .31	Fine	5.7 - 8.0	R	1	0		1	1%	65%
.3144	Medium	8.0 - 11.3	Α	6	0		6	6%	71%
.44 - .63	Medium	11.3 - 16.0	V	6	1		7	7%	78%
.63 - .89	Coarse	16.0 - 22.6	E	2	1		3	3%	81%
.89 - 1.26		22.6 - 32.0	L	1	0		1	1%	82%
1.26 - 1.77	/er y Coars	32.0 - 45.0	S	2	3		5	5%	87%
1.77 - 2.5	/ery Coars	45.0 - 64.0		4	2		6	6%	93%
2.5 - 3.5	Small	64 - 90	С	3	0		3	3%	96%
3.5 - 5.0	Small	90 - 128	0	3	0		3	3%	99%
5.0-7.1	Large	128-180	В	1	0		1	1%	100%
7.1 - 10.1	Large	180 - 256	L	0	0		0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0	0		0	0%	100%
14.3 - 20	Small	362 - 512	L	0	0		0	0%	100%
20 - 40	Medium	512 - 1024		0	0		0	0%	100%
40 - 80	.rg- Very Lr	1024 - 2048	R	0	0		0	0%	100%
	Bedrock		BDRK	0	0		0	0%	100%
			Totals	60	40		100	100%	100%

Cat Creek Parker Tract Macon County

Fleet F	STATION	Ī	FS	ELEVATION	NOTES		BANK	BANKFULT (BKF)	K(F)		TOP	TOP OF BANK (TOB)	(08)
102 26 5 5 6 5 96 5 4 4 4 4 4 1	(Feet)	(Feet)	(Feet)	(Feet)			Hydrau	ilic Geon	netry		Hydra	ulic Geom	etry
102 26 572 98-54 Freely Freely <th>0.00+0</th> <th>102.26</th> <th>5.6</th> <th>99.96</th> <th></th> <th></th> <th>Width</th> <th>Depth</th> <th>Area</th> <th></th> <th>Width</th> <th>Depth</th> <th>Area</th>	0.00+0	102.26	5.6	99.96			Width	Depth	Area		Width	Depth	Area
102 26 6.00 96.26 102 0.0 <	0.80+0	102.26	5.72	96.54			(Feet)	(Feet)	(Sq. Ft.)		(Feet)	(Feet)	(Sq. F
102.26 588 96.28 102.26 102.26 103 102.26 103 102.26 103 102.26 103 102.26 103 102.26 103 102.26 103 102.26 103 103 103 103 102.26 103 103 103 103 103 103 103 103 103 103	0+16.0	102.26	9.00	96.26			0.0	0.0	0.0		0.0	0.0	0.0
102 26 598 985 28 102 26 102 26 651 965 25 102 26 651 965 26 21 102 26 651 965 25 102 26 102 26 651 965 25 18K fint 1 14 19 19 22 11 14 13 102 26 102 26 102 26 102 26 102 26 102 26 102 26 102 26 103 949 949 94 87 12 2 9 11 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 1 12 3 1 1 12 3 1 1 12 3 1 1 12 3 1 1 12 3 1 1 12 3 1 1 12 3 1 1 12 3 1 1 12 3 1 1 12 3 1 1 12 3 1 1 12 3 1 1 1 1	0+26.0	102.26	5.88	96.38			2.0	0.4	0.4		3.0	0.5	0.8
102 26 651 9657 LTOB 0.8 12 0.8 11 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	0+33.0	102.26	5.98	96.28			8.0	0.8	9.0		1.6	6.0	1.
102.26 66.3 96.25 LBKF lint 14 19 2.2 11 1.2 2.9 3.1 1.3 2.0 3.0 1.0 2.0 3.0 <t< td=""><td>0+38.0</td><td>102.26</td><td>6.51</td><td>95.75</td><td>LTOB</td><td></td><td>9.0</td><td>1.2</td><td>8.0</td><td></td><td>1.4</td><td>1.3</td><td>1.6</td></t<>	0+38.0	102.26	6.51	95.75	LTOB		9.0	1.2	8.0		1.4	1.3	1.6
102.26 7.01 96.25 1.3 2.0 3.1 0.6 3.1 0.6 3.2 3.2 0.2 3.1 0.6 3.2 3.2 0.0 2.2 3.2 0.0 3.3 3.0 0.0 3.3 3.0 0.0 3.3 3.0 0.0 3.3 3.0 0.0 3.3 3.0 0.0 3.3 3.0 0.0 3.3 3.0 0.0 3.3 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 0.0 3.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0+38.0	102.26	6.63	95.63	LBKF lint		4.1	1.9	2.2				
102.26 7.39 94.67 0.2 3.1 0.6 3.1 0.6 3.0 3	0+41.0	102.26	7.01	95.25			1.3	5.9	3.1		1.3	2.0	2.2
102 26 786 9440 9420 9450	0+41.8	102.26	7.39	94.87			0.2	3.1	9.0		0.2	3.0	0.5
102 26 851 875 112 38 64 1 12 38 36 1 102 26 1 102 26 37 1 12 38 44 1 12 38 36 1 102 26 37 1 12 38 44 1 12 38 44 1 12 38 36 1 102 26 37 1 12 38 31 1 14 2 31 1 12 38	0+42.6	102.26	7.86	94.40			0.5	3.5	1.7		0.5	3.3	1.6
102 26 949 927 112 3 F 448 112 3 T 102 26 1016 920 LEOW 112 36 44 112 37 102 26 1030 9184 TW ws=9 71 16 23 44 12 36 102 26 1030 9184 TW ws=9 71 16 23 44 16 24 102 26 1030 9186 TW ws=9 71 16 23 44 16 24 102 26 991 90 102 00 05 08 06 0	0+44.0	102.26	8.51	93.75			1.8	3.6	6.4		1.8	3.6	6.2
102 26 976 92 50 LEOW 13 37 4.8 13 3.9 102 26 10.16 92 10 10.2 6 4.4 1.2 3.6 4.4 1.2 3.9 102 26 10.23 92 03 1.0 1.4 1.3 2.5 1.2 3.9 102 26 10.30 9.9 1.0 0.6 0.8 0.6 0.6 1.4 1.4 1.2 2.4 102 26 10.20 9.5 REOW TOTALS 1.2 0.6 1.4 1.2 0.6 1.4 1.2 3.4 102 26 9.9 9.3 REMF TOTALS 1.2 0.6 1.4 1.2 0.6 1.4 1.2 0.6 1.4 1.2 0.6 1.4 1.2 0.6 1.4 1.2 0.6 1.4 1.2 0.6 1.4 1.2 0.6 1.4 1.2 0.6 1.4 1.2 0.6 1.4 1.2 0	0+45.3	102.26	9.49	92.77			1.2	3.8	4.4		1.2	3.7	4.4
102.26 10.10 92.03 10.2 4.4 1.2 3.8 102.26 10.42 9.03 92.03 1.6 2.3 4.4 1.6 2.3 4.4 1.6 3.8 102.26 10.30 91.96 1.0 1.6 2.3 4.4 1.6 2.3 4.4 1.6 3.4 102.26 9.91 92.04 1.0 1.6 0.6 0.8 0.6 </td <td>0+45.5</td> <td>102.26</td> <td>9.76</td> <td>92.50</td> <td>LEOW</td> <td></td> <td>1.3</td> <td>3.7</td> <td>8 4</td> <td></td> <td>1.3</td> <td>3.9</td> <td>5.0</td>	0+45.5	102.26	9.76	92.50	LEOW		1.3	3.7	8 4		1.3	3.9	5.0
102 26 1042 92 03 102 36 33 3.1 109 3.7 102 26 10.30 91.96 TW ws=971 1.4 1.3 2.5 4.4 1.6 3.3 4.4 1.6 3.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.3 4.4 1.6 2.0 1.7 2.0 1.7 2.0 1.7 2.0 1.7 1.7 1.7 2.0 1.7 1.7 1.8 1.1 1.2 1.1 1.2 1.1 1.2	0+46.0	102.26	10.16	92.10			1.2	3.6	4.4		1.2	3.8	4.6
102 26 1034 2 91 84 TW ws=971 16 23 44 16 34 16 34 102 26 1030 9196 102 26 9196	0+47.8	102.26	10.23	92.03			6.0	3.3	3.1		6.0	3.7	3.4
102 26 10 30 91 96 1 4 1 4 2 4 102 26 102 26 92 04 102 06 0.9 0.9	0+49.0	102.26	10.42	91.84			1.6	2.3	4.4		1.6	3.4	5.7
102 26 102 26 102 26 102 26 102 26 102 26 102 26 102 26 102 26 102 26 102 26 102 26 103 26 102 26 1	0+50.3	102.26	10.30	91.96			4.1	1.3	2.5		1.4	2.4	4
102 26 9 91 93.5 REOW TOTALS 12 0 0 5 12 0 9 102 26 7 90 94 36 TOTALS 12 40.3 TOTALS 28 0.1 0 <	0+51.5	102.26	10.22	92.04			9.0	8.0	9.0		9:0	1.4	1.1
102 26 8 90 93.36 TOTALS 18.2 40.3 TOTALS 2.8 0.1 102 26 7 39 94 87 SUMMARY DATA (BKF) AIBKF) AIBKF AIBKF) AIBKF) AIBKF)	0+52.4	102.26	9.91	92.35	REOW		1.2	0.0	0.5		1.2	6.0	1.4
102 26 7 99 94 35 102 26 7 39 94 35 102 26 7 39 94 35 102 26 6 33 95 53 RBKF 40.3 AlbKF) 40.3 AlbKF) 102 26 6 6 39 95 40 RTOB Max d 38 102 26 5 45 95 81 102 26 5 18 9 70 98 102 26 5 18 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0+54.0	102.26	8.90	93,36		TOTALS			40.3		2.8	0.1	1.4
102 26 6 63 8 88 F SIMMARY DATA (BKF) 102 26 6 6 63 8 88 F RTOB W18KF) 18 2 102 26 6 6 63 8 63 8 88 F RTOB W18KF) 18 2 102 26 6 6 63 8 63 6 1 8 97 08 W18KF) 18 2 102 26 5 18 97 08 W18KF) 18 2	0+55.4	102.26	7.90	94.36						TOTAL			44.9
102.26 663 9663 RBKF 40.3 (102.26 602 96.40 RTOB (102.26 518 97.08	0+56.0	102.26	7.39	94.87		SU	MMARY D	ATA (BK)	£				
102.26 6.02 96.24 RTOB WIERFO 18.2 A(BRF) 102.26 5.86 96.91 Max d 3.8 WIERFO 102.26 5.18 97.08 "LACK OF INDICATORS/RECENT CHANNELIZATION Mann d 102.26 5.18 97.08 "LACK OF INDICATORS/RECENT CHANNELIZATION Mann d 102.26 5.34 56.59 "A 59.50 "A 59.50	0+57.2	102.26	6.63	95.63	RBKF		A(BKF)	40.3			SUMMARY	DATA (TO	8
102.26 5.86 96.40 Max d 3.8 W(BKF) 102.28 5.45 96.81 Man d 2.2 Man d 102.26 5.18 97.08 *LACK OF INDICATORS/RECENT CHANNEL/ZATION Man d 102.26 5.18 97.08 *LACK OF INDICATORS/RECENT CHANNEL/ZATION 102.26 5.34 56.59 102.26 5.34 58.92	0.09+0	102.26	6.02	96.24	RTOB		W(BKF)	18.2			A(BKF)	44.9	
102.26 54.5 96.81 Mean d 2.2 Max d 102.26 518 97.08 "LACK OF INDICATORS/RECENT CHANNEL/ZATION Max d 102.26 518 97.08 "LACK OF INDICATORS/RECENT CHANNEL/ZATION 102.26 517 96.69 "LACK OF INDICATORS/RECENT CHANNEL/ZATION 102.26 534 549 549	0.69+0	102.26	5.86	96.40			Max d	3.8			W(BKF)	22.0	
102.26 5.18 97.08 "LACK OF INDICATORS/RECENT CHANNEL/ZATION Mean d 102.26 5.57 96.69 "LACK OF INDICATORS/RECENT CHANNEL/ZATION 102.26 5.57 96.69 "LACK OF INDICATORS/RECENT CHANNEL/ZATION 102.26 5.34 96.92	0+75.0	102.26	5.45	96.81			Mean d	2.2			Max d	3.9	
102.26 5.18 97.08 102.26 5.57 96.69 102.26 5.34 96.92	0+82.0	102.26	5.18	97.08							Mean d	5.0	
102 26 5.57	0.68+0	102.26	5.18	97.08		LACK OF II	VDICATOR	S/RECEN	IT CHANNE	ELIZATION			
102 26 5.34	0+95.0	102 26	5.57	69'96									
	1+00.0	102 26	F 34	96 92									

Bank Erosion	Potential	moderate	very low	very low	low	very low		low	
) xepu	Index	5.9	-	1.2	3.9	1.2	2	18.2	
n Hazard	Value	1.5	,	96	09	96	Sill/Clay		-
Bank Erosion Hazard Index (BEHI) Bank	Criteria	Bank HVBkf Ht	Root Depth/Bank Ht	Root Density (%)	Bank Angle (Degrees)	Surface Protection (%)	Bank Materials Sill/Clay		

١		
ı	>	
ı	EA	
١	STR	
l	ž	
ı	00	
l	0	
l	Ž	
۱	8	
ı	SS	
	U	

Cat Creek Parker Tract Macon County

Watershed: Stream Reach: Drainage Area: Date: Station:		Cat Creek-Parker Tract UT2 0.47 7/31/2003 N/A TRIB FROM POND	POND								
STATION	Ξ	FS	ELEVATION	NOTES				BANKFULL			
(Feet)	(Feet)	(Feet)	(Feet)				Hyd	Hydraulic Geometry	etry		
0.00+0	100.00	5.25	94.75				Width	Depth	Area		
0.80+0	100.00	5.42	94.58				(Feet)	(Feet)	(Sq. Ft.)		
0+18.0	100.00	5.57	94.43				0.0	0.0	0.0		
0+27.0	100.00	5.47	94.53				0.5	0.4	1.0		
W35.0	×. ×	522	04.78				0.3	0.7	0.2		
0+42.5	100.00	4.98	88.02				1.1	1.5	1.2		
0+47.0	100.00	4.88	88	LTOB			9.0	1.9	1.0		
0+52.0	×.	5.13	94.87				0.2	2.1	0.4		
0+61.0	100.001	5.14	94.86				0.5	2.4	1.1		
0+64.0	100.00	5.14	94.86				0.2	3.1	9.0		
W86.0	W.W	5.49	94.51				0.4	3.1	1.2		
0+67.0	W.W	5.90	94.10				0.5	2.5	1.4		
0+67.2	100.00	60.9	93.91	LBKF lint			8.0	2.4	2.0		
7.79+0	W.W	6.52	93.48				0.7	2.1	1.6		
0+68.0	1W.W	8.77	93.23				1.0	1.0	1.5		
0+69.1	1 M.M	7.62	92.38				0.7	0.5	0.5		
OW.7	W.W	7.95	95.05				0.7	0.0	0.2		
6.WO	W.W	8.16	91.84	9		TOTALS	8.2		12.9		
0+70.4	100.00	8.50	81.50	≫		'					
0+70.6	100.00	9.21	90.79	AL.	WS=8.50						
0+71.0	M.W	9.15	90.85								
0+71.5	W. W.	8.62	91.38	REOW							
0+72.3	100.00	8.45	91.55								
0+73.0		8.16	81.0	99							
0+/4.0	W.W	80.7	28.38		_	CHMMADY DATA (BANKELLI	ATA /DA	VI COLOR			
0+75.4	VV .VV	000	0000	2700		A/D/C/	420	WAYEDA)	180		STOTAL
0476.0	W. W.	. n	04.45	L L		W(BKE)	0.0	Slope	3 5		2
0+77.5	3	5.12	88.88			Max d	3.1	Sinuosily	0		
0 62 + 0	100 00	4.93	85.07	RTOB		Meand	16	Area= A	4		
0+82.0	× ×	5.05	04.85	1		M/D	5.2	Width= W	. >		
0+85.0	100.00	51	9490			Entrenchment	>18.3	Depth= D	0		
0+88.0	W.W	4.88	95.12			Stream Type	AN	Bankfull= BKF	3KF		
0+92.0	W. W	4.81	95 19		12	Area from Rural Regional Curve	Regional	Curve	13		
0+97.0	W.W	4.62	85.38		1		1				
1+00.0	100.00	4.51	85 49		-	LACK OF INDICATORS/RECENT CHANNELIZATION	DICATO	RS/RECE!	I CHANN	ELIZATION	
1+08.0	Ν.	3.77	96.23								
	400,00	2.7.4	20.20								

Which Hydraulic Geometry Which Calculation Criteria Value Index Potential	Feetj Sq. FE Feetj Sq. FE		TOP OF BANK (TOB)	(тов)	Bank Erosion Hazard Index (BEHI)	on Hazard	Index (BE	田
Feetja Crippin Cripp	The state of the	445-1141	Hydraulic Geor	metry		de line	n de c	Bank Erosion
Solution Color C	Solution	(Fact)		(So Et)		14	5.2	moderate
S	S			000	Root Denth/Bank Ht	-	-	AND VAN
90 0.2 1.4 Bank Angel Degrees) 55 3.6 2.0 0.2 0.5 1.4 Bank Angel Degrees) 55 3.6 3.6 3.6 0.2 0.5 0.5 1.1 0.2 0.7 1.1 0.2 0.7 1.1 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Summary Data (1974)	9 C	0 0	0.0	Doot Deseity (%)	. 6	43	aferabour
3.0 0.2 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	30 0.2 0.5 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0		1.4	Rank Angle (Degrees)	55	9.0	MOI
20 05 07 Bank Materials SIII/Clay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 05 07 Bank Materials SIBCRay 0 0 05 0.5 0.7 Bank Materials SIBCRay 0 0 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.5 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	9 6	0.0		Surface Protection (%)	8 8	3.0	wul
10 0.9 0.7 Looking across UT2 at right bank 0.5 1.8 0.5 1.7 0.0 1.4 0.5 1.7 0.0 1.4 0.5 1.7 0.0 1.4 0.5 1.7 0.0 1.4 0.5 1.7 0.0 1.4 0.5 1.7 0.0 1.4 0.5 1.7 0.0 1.4 0.5 1.7 0.0 1.4 0.5 1.7 0.0 1.4 0.5 1.7 0.0 1.4 0.5 1.7 0.0 1.4 0.5 1.4 0.5 1.7 0.0 1.4 0.5 1.4 0.	10 09 07 176 1776 1776 1776 1776 1776 1776 17	2.0	0.5	0.7		ilt/Clav	0	
0.2 1.1 0.2 1.6 0.7 1.0 0.9 1.1 0.2 1.0 0.9 1.1 0.2 1.5 0.7 1.0 0.9 1.1 0.2 1.2 0.0 0.1 1.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.2 1.1 0.2 Looking across UT2 at right bank 0.3 18 0.5 1.5 0.7 0.5 1.5 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1.0	0.9	0.7			17.6	wol
05 15 07 07 03 18 05 11 05 07 05 03 05 05 05 05 05 05 05 05 05 05 05 05 05	05 15 07 07 05 11 05 07 05 05 05 05 05 05 05 05 05 05 05 05 05	0.2	1.1	0.2				
1.1 2.6 2.4 0.6 3.0 1.7 0.6 3.0 1.7 0.5 3.2 0.6 0.5 3.4 0.8 0.4 4.2 1.7 0.5 3.5 1.7 0.6 3.5 2.8 0.7 3.2 2.3 1.0 2.1 2.6 0.7 1.1 0.9 0.8 0.6 0.7 1.3 0.1 0.5 1.3 0.1 0.5 1.4 0.0 0.7 3.2 0.0 0.7 3.2 0.0 0.7 3.2 0.0 0.7 3.2 0.0 0.7 3.3 0.1 0.5 3.4 0.0 0.7 3.5 0.0 0.7 3.5 0.0 0.7 3.6 0.0 0.7 3.7 0.	1.1 2.6 2.4 0.6 3.0 1.7 0.6 3.0 1.7 0.6 3.2 1.7 0.5 3.2 1.7 0.4 4.2 1.7 0.8 3.5 2.8 0.7 3.2 2.8 0.7 1.1 0.9 0.8 0.6 0.7 1.3 0.1 0.5 1.4 0.0 0.7 1.5 0.0 0.1 32.0 27.1 SUMMARY DATA ITOB M. u. d. 4.2 M. u. d. 4.2 M. u. d. 4.2 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.5	1.5	0.7	Looking ac	ross UT2 a	at right ban	×
1.1 2.6 0.6 3.0 0.6 3.0 0.6 3.0 0.7 4.2 0.7 3.2 0.7 1.1 0.8 0.0 0.7 1.1 0.8 0.0 0.7 1.1 0.8 0.0 0.7 1.1 0.8 0.0 0.7 0.1 0.8 0.0 0.0 0.	1.1 2.6 0.6 3.0 0.5 3.5 0.2 4.2 0.4 4.2 0.7 3.2 0.7 3.2 0.7 1.1 0.7 1.1 0.8 0.6 1.3 0.1 1.3 0.1 1.3 0.1 1.4 WERF) 27.1 WIRKF) 27.1 WIRKF) 27.1 WIRKF) 3.2 Much 4.2	0.3	1.8	0.5)	
06 30 02 32 05 35 05 35 05 35 07 42 07 35 07 11 07 11 08 06 13 01 15 00 1320 MGKF) 271 MGKF 271	06 30 02 32 05 35 05 42 05 42 05 35 07 35 07 11 07 11 08 06 13 01 13 01 18 01	1.1	2.6	2.4				
02 32 05 45 05 46 04 42 06 35 08 35 07 32 07 11 07 11 13 00 13 00 32 00 MRKF) 271 MRKF 271	02 32 05 45 05 45 04 42 06 35 07 32 07 16 07 16 07 16 07 16 07 16 07 16 07 16 07 17 08 06 13 00 320 M nd 42	9.0	3.0	1.7	Control of the last of the las			The state of
05 35 00 42 00 42 00 42 00 42 00 42 00 65 00 65 00 65 00 60	05 35 00 42 00 42 00 42 00 00 00 00 00 00 00 00 00 00 00 00 00	0.2	3.2	9.0	一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二			
02 42 04 42 05 36 06 35 07 32 10 2.1 07 1.6 07 1.1 08 06 13 0.1 32.0 A(RKF) 27.1 A(RKF) 27.1	02 42 05 36 05 35 07 35 07 11 07 11 07 11 13 0.1 15 00 320 M ud 4.2	0.5	3.5	1.7	The state of the s			200
04 42 08 36 08 35 07 32 10 21 10 21 13 01 15 00 320 320 W(BKF) 271	04 42 05 36 08 35 07 32 10 21 10 21 13 01 13 01 15 00 320 8UMMARY DATA ITOE A (BKF) 27.1 WIRKF) 27.1 WIN 47 4.2	0.2	4.2	0.8	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一			の一般を
05 36 07 116 07 116 07 116 00	05 36 07 32 07 110 07 111 00 07 110 00 00 00 00 00 00 00 00 00 00 00 00	0.4	4.2	1.7	The second secon			
08 35 07 32 10 2.1 07 16 07 11 13 0.0 13 0.0 32,0 MBARY DATA (TOE WIRKF) 27.1	08 35 07 32 10 2.1 07 1.6 08 0.6 1.3 0.1 1.5 0.0 32.0 8.UMMARY PATA ITOB A (BKF) 27.1 WIRKF) 27.1 WILL MILL 4.2	0.5	3.6	2.0				TO A COLOR OF THE PARTY OF THE
07 3.2 1.0 2.1 0.7 1.6 0.7 1.1 0.8 0.6 1.3 0.1 1.5 0.0 32.0 A(BKF) 27.1 W(BKF) 27.1	07 32 07 16 07 11 08 06 13 01 15 00 320 820 820 820 820 820 820 820 820 820 8	0.8	3.5	2.8				からた できるか
10 2.1 0.7 1.6 0.7 1.1 0.8 0.6 1.3 0.1 32.0 A(RKF) 27.1 W(RKF) 27.1	10 2.1 0.7 16 0.7 1.1 0.8 0.6 1.3 0.0 32.0 32.0 MMARY DATA ITOE MUMARY DATA ITOE MUMARY DATA ITOE	0.7	3.2	2.3		の世紀は	と、自動	いるかではない
07 116 08 06 13 01 15 00 320 SUMMARY DATA (TOB A(BKF) 271 W(BKF) 271	07 16 07 1.1 08 06 13 0.1 15 0.0 32.0 2 8UMMARY DATA (TOB A (BKF) 27.1 W (BKF) 27.1 W (M of 4.2	1.0	2.1	2.6	から 日本 はない こうち	F		では、そのも
07 11 08 06 13 01 32 0 32 0 34 (BKF) 271 A(BKF) 271	07 11 08 06 13 01 15 00 32 0 220 2 320 2 WIRK) 27.1 WIRK) 320 Mud 4.2	0.7	1.6	1.3	は 大田 ないこと 古山の	NO.		という
0.8 0.6 1.3 0.1 1.5 0.0 32.0 SUMMARY DATA (TOB A(BKF) 27.1 W(BKF) 32.0	08 06 13 0.1 32 0 2 SUMMARY DATA (TOB A(BKF) 27.1 W(BKF) 32.0 M ud 4.2	0.7	1.1	6.0		4		- A 18 18 18 18 18 18 18 18 18 18 18 18 18
1.3 0.1 1.5 0.0 32.0 2 SUMMARY DATA (TOB A(BKF) 22.1 W(BKF) 32.0	1.3 0.1 1.5 0.0 32.0 2 SUMMARY DATA (TOB A(BKF) 27.1 W(BKF) 32.0 M u d 4.2	0.8	9.0	0.7	でというでは、	6		
15 0.0 2 32.0 2 SUMMARY DATA (TOB A (BKF) 27.1 W(BKF) 32.0	15 00 2 32.0 2 SUMMARY DATA (TOB A(BKF) 27.1 W(BKF) 32.0 W(BKF) 32.0 W(BKF) 32.0	13	0.1	0.5	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	1000		The same
32.0 <u>SUMMARY DATA (TOE</u> A(BKF) 27.1 W(BKF) 32.0	32.0 SUMMARY DATA (TOE A(BKF) 27.1 W(BKF) 32.0 M ud 4.2	1.5	0.0	0.1	The second second		TANK D	
SUMMARY DATA (TOE A(BKF) 27.1 W(BKF) 32.0	SUMMARY DATA (TOE A (BKF) 27.1 W (BKF) 32.0 M u d 4.2	32		27.1		の上次の		AND THE PERSON NAMED IN
SUMMARY DATA(TOB) A(BKF) Z1.1 W(BKF) 32.0	SUMMARY DATA (TOB) A(BKF) 27.1 W(BKF) 32.0 M u d 4.2				一年 一日 日本	The second second	から	THE PERSON NAMED IN
A(BKF) 27.1 W(BKF) 32.0	A(BKF) 27.1 W(BKF) 32.0 M u d 4.2	ns	MMARY DATA	(TOB)	としていくと言うと			
		AG	BKF) 27.1		代があるというという			SON TO
		W(E						

CatCreek ParkerTract Macon County

Cat Creek Parker Tract

·		<u> </u>	PEBBLE C		County				
Site: Cat C	rook		r LDDLL C	COIVI			7/22/2003		
		and George	Lankford				Parker Tract		
Traity. Airie	anda roda	and Octorge	Edilitioid		article Cou	nt	T GIROT TIGOT	Lorigitadiria	
Inches	Particle	Millimeter		Riffle	Run/Pool		Total No.	Item %	Cumulativ
	Silt/Clay	< 0.062	SIC	4	3		7	7%	7%
	Very Fine	.062125	S	6	6		12	12%	19%
	Fine	. 125 - .25	Α	17	11		28	28%	47%
	Medium	.2550	N	6	4		10	10%	57%
	Coarse	. 50 - 1.0	D	0	0		0	0%	57%
.0408	ery Coars	1.0 - 2.0	S	0	0		0	0%	57%
.0816	Very Fine			0	0		0	0%	57%
.1622	Fine	4.0 - 5.7	G	0	1		1	1%	58%
.2231	Fine	5.7 - 8.0	R	1	0		1	1%	59%
.3144	Medium	8.0 - 11.3	Α	0	3 1		3	3%	62%
.4463	Medium	11.3 - 16.0	V	1	1		2	2%	64%
.6389	Coarse	16.0 - 22.6	E	1	2		2 3	3%	67%
.89 - 1.26	Coarse	22.6 - 32.0	L	6	4		10	10%	77%
		32.0 - 45.C	S	4			6	6%	83%
		45.0 - 64.0		8	2		11	11%	94%
2.5 - 3.5	Small	64 - 90	С	4	0		4	4%	98%
3.5 = 5.0	Small	90 = 128	0	2	0		2	2%	100%
5.0 - 7.1	Large	128 - 180	В	0	0		0	0%	100%
7.1 - 10.1		180-256	L	0	0		0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0	0		0	0%	100%
14.3-20	Small	362 - 512	L	0	0		0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0		0	0%	100%
40 - 80	.rg- Very Lr	1024 - 204 8	R	0	0		0	0%	100%
	Bedrock		BDRK	0	0		0	0%	100%
			Totals	60	40		100	100%	100%

	Glide						0,00012							21100									0.0167			0.0000								Glide	0.0020	0.0070	0,000	0.2761	0.9864	
	Glide						11							9									ø											Glide	0	17	10			40.0
	Run		0.0004	9000																														Run	00.000	0.0420	0.02590	2.7611	5.7982	
	Run			=																														Run	11	Ξ	Ξ			-
NOTE wooden stake	Riffla	0.0183						0.0020		0.0162		0.0463			0.0213			0.0047						0.0000			0.0067	0 0006			0.0067		IDINOR	Riffle	0.0000	0.0160	0 0100	0.6903	2 2088	
100 00 100 00	Riffle	42.0						10		21					16			8						v			21				15			Riffle	7	95	8			202 0
2 3	Pool			0.0000				0.0000	2000		0.0175	0.0078					0000			0.0002	0.0090				0,0000			0.0150	0.0048					Pool	00000	0.0040	0.0020	0.0000	0.5522	0.2761
E 001	Max Pool Depth					3.10																								2.04				Max Pool	2.04	3.10	2.57	25	5.04	
8.34 8.34	Pool			10							0						S,			2	10				ga Z			7.	33			28		Pool	22	11	3			210
STA TBM e1 TP e1	4			ş				S	3		92	q					3			p	30				61			5	4					0	H R	3	38	0.7	3.0	1.1
	Bk Ht./ Bkf Ht.	1.00		1.84				1.86		1.85	8	1 40					90				1.60												232	Bk Ht	130	2.32	1.62	2	2	ž
	Ē	108.34	108.34	100.00	HC 901	106.34	106.34	100.34	106.34	106.34	106.34	100.74	106.34	106.34	108.34	106.34	106.34	106.34	106.34	108.34	100.34	106.34	106.34	106.34	106.34	106.34	106.34	100.74	106.34	106.34	106.34	108.34	108.34							
	Notes	99.76 head riffle	intermediate	101.42 head food	101.60 pool cs	max pool	head of gide	101.08 riffle bedrock starts	max poolity varie	100.25 niffle top of tir	head pool	WHICH Thead of birtime	max pool	head of gide	head riffle	97.33 riffle cs	av into, head or poor	head riffle	ntermediate	head small poor	AM K1 head ooci		head of glide	head riffle	head poor	head of glide	head riffle	head pool	head pool	max pool	head riffle	head pool	99.46 head rithe		uim	max	BAB	Min ratio	Max ratio	avg ratio
	TOB (FS) TO			101 28 9				5.26 101		6.09 100		NA NA					8.37				7.81 9.8												88 98							
		7 97 86		68.63				50.07		98.56 6		98.10					0.70				2 20 90									86.89			96.16							
		000		7.81	98 /			2 2 2		7 78 9							5				979									0.45 8			8 81.0							
		83.68	58.83	8 8	20.00	16.04	18.81	M 70	08.9	8.76	641	2 2 2	17.00	90.00	29 92	9 9	2 9 9	96.36	92 26	10.07	2 2	95 63	60 03	55 55	2 2 3	10 10	N N	2 3	25 18	94.65	2	RR	PH 24		2,000					
Mile Tenessee all Creek-Preserve Tract 63 (21/2003 ONGITUDINAL PROFILE	١	17.8	-				-	888			8 83	10.07	-	_	۳.	98'01		-	~		9 2				1141			2 2 2				12.06			ws slope 0.0072					
Little Tenessee Cat Creek-Preserve Tract 3.63 7721/2003 LONGITUDINAL PROFILE		92.78	96.39	10 NO	96.41	16.16	95.79	26.87	15.58	15.00	95.43	20 00	2.7	78 MS	96.37	2 3	1 1	16 16	SH.75	94.27	9 1	93.88	80 108	2 2	93.81	93.62	94.28	M 38	16.58	93.85	83.90	93.44	93.66		0.0077		32.8	1.5	2.9	
70%27	W (F8)	80.08	988	10.37	10.93	11,40	10.56	10.47	10.83	6.77	10.91	10.01	11.63	11.37	10.97	11.41	8 8	2 20	11.56	12.07	12.16	12.46	12.26	12 03	12.53	12.72	12.08	2 2 2	12.40	12.49	12.44	13.07	12.68		adds w		BKF W (R)=	BASE D (R)=	Nax D (ft)=	
River Basin: Stream Reach: Dralange Area Date: Description:			0-37.5	0+810	0-810	0-65.0	0+720	0+0000	1-070	1+08.0	1-29.0	1+460	1+58.0	1-720	1-78.0	1-86.5	2-120	2-28.0	2-61.0	2-87.0	3-050	3-08.0	3+15.0	3-210	3-250	3+44.0	3+26.0	3-360	3-87.0	4+05.0	4-28.0	4+48.0	4+68.0				ā	8	BAS A	

463.0

Stream Reach: Drainage Area: Date: Station:	Car Creek Preserve Tract-upper 3.40 7/21/2003 0+61 Pool	Cat Creek Presenve Track-upper 7/21/2003 0-61 Pool				-,	Tetter match to regional curv	o lenogen of	A.N.
OT A TO	:	9	-	-			BA	BANKFULLoffice"	_eo
(FEET)	(FEET)	FEET	(FEET)	NOTES			Width	Hydraulic Geometry h Deoth	Area
0.000+0	108.34	3.77	102.57		ì		(Feet)	(Feet)	(Sq. Ft.)
0+000	106.34	3.98	102.36	FPA			0.0	0.0	0.0
0+15.0	106.34	4.56	101.78				0.3	2.0	0.3
0.20.0	106.34	4.56	101.78				6.0	2.1	1.9
0+23.0	106.34	4.74	101.60	LTOB			0.3	2.2	0.7
0+240	106.34	5.22	101.12				1.2	2.8	3.0
0+24.3	106.34	7.39	98.92	LBKF (lint)			1.0	3.1	2.9
0+24.6	106.34	9.40	36 8	100			1.0	3.4	3.2
0.00	2000	200	20.02	FEOR			2 .	0 0	0 0
0+27.0	106 %	10.19	96.15				2 2	3.4	0 0
0+280	108.34	10.47	95.87				4 00		0.4
0+29.0	106.34	10.76	95.58				40	9	6.2
0+30.0	106.34	10.93	95.41	Z.	ws=9.54		0.8	1.5	1.2
0+31.0	106.34	10.75	95.59				3.4	0.8	3.9
0+32.2	106.34	10.51	95.83	REOW			1 8	90	1.3
0+340	106.34	8.89	97.45			-	3.7	0.5	2.1
0+38.0	106.34	9.00	97.34				1.8	0.0	0.4
0+38.8	106.34	8.89	97.45				3.5	0.0	0.0
0+42.2	106.34	8.18	98.16						
0+44.0	106.34	808	98.30			TOTALS	28.7		42.1
0-47 7	106.34	7.88	98.46						
0.440	106.34	7.38	98.86	2007					
0+553	106 24	6.08	90.36	NDAT UTICE		-	MINIS	SHUMADY DATA (TOB)	(aob)
0+583	106.34	6.90	88 44				A/BKF)	42.1	
0+63.0	106.34	6.81	88.53				W(BKF)	28.7	
0+66.3	106.34	7.08	99.26				Max d		
8.69+0	106.34	7.05	99.28				Mean d		
0+73.9	106.34	6.52	99.82						
0+77.4	106.34	5.93	100.41						
0.482.0	106.34	5.22	101.12						
0+844	106.34	5.15	101.19						
0.88.0	106.34	4.47	101.87						
0+93.4	106.34	3.48	102.86	FPA					
0.00.0	4000	-	40000						

Width Depth Width Depth Depth Width Depth			TOB		
Market M		Hydr	Bullic Geo	metry	
100 000 000 000 000 000 000 000 000 000		(Feet)	(Feet)	(Sq. Ft.)	
010 020 030 030 040 050 050 050 050 050 050 05	_	0.0	0.0	0.0	Bank Eroslor
0.00		1.0	0.5	0.2	
000 000 000 000 000 000 000 000	_	0.3	2.7	0.5	Criteria
0.00 4 4 8 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8		0.3	4.7	1.1	Bank Ht/Bkf Ht
49 49 49 49 49 49 49 49 49 49		6.0	90	4.2	Root Depth/Bank Ht
1100 1000		0.3	4.9	1.4	Root Density (%)
100 857 856 82 82 82 82 82 82 82 82 82 82 82 82 82			5.5	6.2	Bank Angle (Degrees)
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.0	5.7	5.6	Surface Protection (%)
10 60 2 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.0	8.0	5.9	Stratification
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.0	6.2	6.1	Bank Materials
2 4 4 4 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2		1.0	6.0	6.1	
6 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8		1.2	5.8	7.1	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.8	4.2	8.8	
3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6			4.3	16.8	CALC
184 184 197 197 197 198 198 198 198 198 198 198 198 198 198			4.2	3.4	THE CHARLES IN COMMENTS
33 37 33 35 23 23 23 22 22 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25		3.4	3.4	12.8	でくる問題の対象を
18 26 27 26 28 28 28 28 28 28 28 28 28 28 28 28 28			3.3	6.1	はおいたというできた。
18 26 27 23 22 27 22 47 21 21 21 21 21 21 21 21 21 21 21 21 21		3.7	3.1	11.8	田田 一日 一日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日
23 22 22 23 33 22 24 41 7 22 24 24 41 7 23 41 7 24 41 7 24 41 7 24 41 7 24 41 0 5 5 4 4 0 0 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1.8	2.6	5.2	1000年に大人の大人の大人の大人の大人の大人の大人の大人の大人の大人の大人の大人の大人の大
23 22 22 47 22 33 22 23 34 18 18 24 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		3.5	2.7	9.3	に 日本
33 2.2 33 2.3 35 2.3 3.5 2.3 4.1 18 4.6 0.5 2.4 0.4		2.3	22	5.6	
8.7 2.1 3.3 2.3 2.3 3.5 2.4 4 1.2 4 6 0.5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3.0	2.2	6.6	
33 23 35 23 45 12 24 05		4.7	2.1	8.8	
3.5 2.3 4.1 1.8 3.5 1.2 4.6 0.5 2.4 0.4		3.3	2.3	7.3	THE REAL PROPERTY AND ADDRESS OF THE PARTY AND
4.1 1.8 3.5 1.2 4.6 0.5 2.4 0.4		3.5	2.3	8.1	一日 一
35 12 46 0.5 24 0.4		4.1	1.8	4.8	
24 0.5		3.5	1.2	5.2	
2.4 0.4		4.6	0.5	3.8	
61.4			0.4	17	
	RIVE	61.4		175.0	で対して

Bank Erosion moderate very high moderate very high extreme

Bank Erosion Hazard Index (BEHI)

Value 1.5 0.11 47.7 100 0

259	
$^{\sim s}$	
	8
	9
	5
	82
	5
	5
	20
	2
	2
	3
	*
57963	E
	œ
	4
	3
	SS
6.70	Ö
11.79	
125	
20	
Left N	
TU W	
10.0	

SUMMARY DATA (TOB)
A (BKF) 175.0
W (BKF) 61.4
Max d 6.2
Mean d 2.8

Cat Creek Preserve Tract Macon County

Field Crew:	Amanda Todd and George Lankford
River Basin:	Little Tennessee
Watershed:	Cat Creek
Stream Reach:	Preserve Tract
Drainage Area:	3.40
Date:	7/21/2003
Station:	Station: 1+86.5
Feature:	Riffle

101210	(10.00)	2 4	ELEVATION	NOIES				BANKFULL (BKF)	5
0+00.0	106.34	4.05	102.29		ľ		Width	riyaraulic Geometry	Area
0+04-0	106.34	4.72	101.62				(Feet)	(Feet)	(Sq. Ft.)
0+21.0	106.34	5.68	100.66			_	0.0	0.0	0.0
0+27.0	106.34	5.99	100.35				1.4	0.1	0.1
0+33.0	106.34	6.43	99.91				1.6	9.0	9.0
0+37.0	106.34	7.11	99.23	LTOB			3.0	1.1	2.4
0+45.0	106.34	8.33	98.01				1.7	1.5	2.2
0+47.0	106.34	8.77	97.57				1.9	1.8	3.2
0+52.0	106.34	8.75	97.59				1.1	2.8	2.6
0+57.0	106.34	8.18	98.16				9.0	2.9	2.3
0.09+0	106.34	8.52	97.82				1.5	3.0	4.4
0+62.0	106.34	8.20	98.14	LBKF			1.3	3.2	4.0
0+63.4	106.34	8.34	98.00				0.5	2.8	1.5
0+65.0	106.34	8.76	97.58				1.0	2.2	2.5
0.89+0	106.34	9.26	97.08				6.0	3.1	2.4
7.69+0	106.34	9.70	96.64				1.3	0.8	2.5
0+71.6	106.34	10.05	96.29				1.0	0.4	9.0
0+72.7	106.34	11.00	95.34	LEOW			3.0	0.0	9.0
0+73.5	106.34	11.12	96.22						
0+75.0	106.34	11.19	95.15			TOTALS	22.0		31.9
0+76.3	106.34	11.41	94.93	Ž.	ws=10.94				
0+76.8	106.34	10.95	95.39	REOW					
0+77.8	106.34	10.41	95.93						
0+78.7	106.34	11.27	95.07			SUMMA	RY DATA	SUMMARY DATA (BANKFULL	
0.08+0	106.34	9.01	97.33	RTOB		A(BKF)	31.9	W(FPA)	120
0+81.0	106.34	8.58	97.76			W(BKF)	22.0	Slope	0.01
0+84.0	106.34	8.25	98.09	RBKF		Max d	3.2	Sinuosity	1.13
0+85.0	106.34	8.34	98.00			Mean d	1,4	Area= A	_
1+06.0	106.34	7.65	69.86			D/W	15.2	Width= W	2
1+15.0	106.34	9.76	99.58			Entrenchment	5.5	Depth= D	_
1+20.0	106.34	5.99	100.35			Stream Type	O	Bankfull= BKF	3KF
1+25.0	106.34	6.99	100.35			Area from Rural Regional Curve	gional Curr	9/	49
1+27.0	106.34	5.37	100.97						
1+32.0	106.34	4.68	101.66						
1+37.0	106.34	4.48	101.86						
1+47.0	106.34	4.27	102.07						
4 80									

Hydr	Hydraulic Geometry	
(Feet)	(Feet)	(Sq. Ft.)
0.0	0.0	0.0
5.0	12	3.1
5.0	1.7	7.2
5.0	1.6	8.2
5.0	1.1	6.8
3.0	1.4	3.7
2.0	1.1	2.5
1.4	1.2	1.6
1.6	1.7	2.3
3.0	2.2	5.7
1.7	2.6	4.0
1.9	2.9	5.3
1.1	3.9	3.8
8.0	4.0	3.2
1.5	4.1	6.1
1.3	4.3	5.4
0.5	3.8	2.0
1.0	3,3	3.6
6.0	4.2	3.4
1.3	1.9	3.9
1.0	1.5	1.7
3.0	1.1	3.9
1.0	1.2	1.2
21.0	0.5	18.6
TOTALS 69.0		107.1

(OB)				
ATA (1	107.1	69.0	4.3	1.6
UMMARY D	A(BKF)	W(BKF)	Max d	Mean d

Field Crew:	Amanda Todd and George Lankford
River Basin:	Little Tennessee
Watershed:	Cat Creek
Stream Reach:	Preserve Tract-UT4
Drainage Area:	0.17
Date:	12/903
Station:	Small Trib on Preserve From Waldroop property and
Feature:	Junkyard

																_			
						LBKF/T0B			LEOW/TW	ws=6.48	REOW				RBKF				
(Feet)	96.04	95.63	95.49	95.22	94.94	94.78	94.54	94.20	93.38	93.46	93.46	94.28	94.46	94.62	94.78	94.43	94.36	94.44	94.52
(Feet)	3,96	437	4.51	478	5.06	522	5.48	PBO	6.82	8 ∀	6.54	5.72	5.54	5.30	5.22	5.57	5.64	5,56	5.46
(Feet)	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	imm	100.00	100.00	100.00	100.00
(Feet)	0.00+0	0+10.0	0+14.0	0+19.2	0+22.0	0+22.8	0+24.0	0+24.3	0+25.5	0+26.4	0+27.2	0+28.0	0+30.0	0+33.0	0+36.0	0+44.0	0+20.0	0+55.0	0.09+0
	(Feet) (Feet)	(Feet) (Feet) 100.00 3.98	(Feet) (Feet) 100.00 3.88 100.00 437	(Feet) (Feet) 100:00 3.96 100:00 4.37 100:00 4.51	(Feet) (Feet) 100.00 3.88 100.00 4.37 100.00 4.51 100.00 4.78	(Feet) (Feet) 100.00 3.86 100.00 4.37 100.00 4.51 100.00 5.06	(Feet) ((Feet) (Feet] Feet] Feet] Feet]	(Feet) (Feet] Feet	Feet (Feet) (Fe	Feet] Feet	Feet] Feet	Feet] (Feet) (F	Feet] (Feet) (F	Feet (Feet Feet Feet	Feet] (Feet) (F	(Feet) (

	BA	BANKFULL (BKF)	KF)
	Hyd	Hydraulic Geon	netry
	Width	Depth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
	1.2	0.2	0.1
	0.3	9.0	0.1
	1.2	4.1	1.2
	6.0	1.3	1.2
	8.0	1.3	1.1
	8.0	0.5	0.7
	5.0	0.3	8.0
	3.0	0.2	0.7
	3.0	0.0	0.2
TOTALS	13.2		6.2

i vice	Y DATA	MARY DATA (BANKFULL)	
A(BKF)	6.2	W(FPA)	100
W(BKF)	13.2	Slope	
Max d	1.4	Sinuosity	
Mean d	9.0	Area= A	
M/D	27.9	Width= W	
Entrenchment	9.7	Depth= D	
Stream Type	O	Bankfull= BKF	E.

SUMMARY DATA (TOB)
A(BKF) 6.2
W(BKF) 13.2
Max d 1.4
Mean d 0.5

	TOP	TOP OF BANK (TOB) Hydraulic Geometry	OB)	
	Width (Feet)	Depth (Feet)	Area (Sq. Ft.)	Sank Erosion Hazard Index (BEH)
_	0.0	0.0	0.0	Criteria Value Index Erosion
	1.2	0.2	0.1	Bank HvBkf Ht
	0.3	9.0	0.1	Root Depth/Bank Ht
	1.2	1.4	1.2	NOT DONE
	6.0	1.3	1.2	Root Density (%)
	9.0	1.3	1.1	Bank Angle (Degrees)
	8.0	0.5	0.7	Surface Protection (%)
	2.0	0.3	0.8	Bank Materials
	3.0	0.2	0.7	
	3.0	0.0	0.2	
TOTAS	13.2		6.2	

E		No.
Looking upstream		
		1

		09
		55
		20
		42
	13	40
5	Banktull	32
Cross Section 16 Preserve UT4 Riffle Cross-Section		30 Station (feet)
RIFF		25
	7.	- 20
		22
		10
		ro.
	96 96 96	0

		, j	Erosion	high	wery low	low	wery low	very low	Ţ	and a					17.74	3	1	V.												報を記り				Shepson.														
	H)			Ž	Very									pstream	177	Y	to	1	1						-			6				Section.		10.10.20														
	ndex (BE		e Index	7.4	-	2.1		13	Ţ	2				CS looking upstream											l	b					慮	k		1														
	Hazard		a Value	1.9	- H			(c) 85						S	ö	iks iks	á	į.	el.	1					Ä,	ğ		ij						ķ														
	Bank Erosion Hazard Index (BEHI)		Critoria	Bank HJ/Bkf Ht	Root Depth/Bank Ht	Root Density (%)	Bank Angle (Degrees)	Surface Protection (%)	Dalik Majera						A PRINCIPAL BROKENSHIPS		数ははないという		2000年		の一個の一個の一個の	だけを作りてい	The state of the s				がは、大きなのでは、					以下にはアルルでは、 では、	のでは、 一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一															
	Area	(Sq. Ft.)	0.0	0.2	0.5	6.0	1.2	6.3	0.0	2.0	1.4	2.2	6.2	6.5	6.0	6.4	2.4	0 4	3.5	6.1	4.2	3.5	6:0	6.8	4 0	4.5	14	2.2	19	70.7	7.0	3.3	6.0	3.5	27	2.7	1.6	0.3	146.7						_	_	-	
TO TO TO	nydraulic Geometry th Depth	(Foot)	0.0	0.3	8.0	5	1.3	1.6	1.4		2.2	23	2.5	2.8	3.2	3.3	3.6	200	0 4	7	4.3	9	8 7	6.4	200	0 4	4.5	4.5	6.4	7 0	2.8	2.3	2.2	1.8	10	17	0	0.1						ATA (TOR)	146.7			0 7
-	Width	(Foot)	0.0	1.6	1.0	1.0	1.0	3.0	2 ;	7 .	0 0	10	2.6	2.5	2.0	1.5	0.7	0 7	0.8	1.0	10	0.8	0.2	4		0	0.3	9.0	4.	2.4	2.1	1.3	0.4	1.7	200	2.0	18	1.2	54.6					SIMMARY DATA (TOR	A(BKF)	W(BKF)		May
																																							TOTALS									
	Area	(Sq. Ft.)	0.0	0.2	8.0	1.3	1.4	800	2.2	77	2.5	0 0	17	0.5	3.5	2.9	2.7	9.70	5 -	2.9	4.6	3.5	2.1	43.2				0.01	1.13		٠.	3KF	49											_				
	Depth Depth	(Foot)	0.0	0.1	0.5	6.0	10	13	# h		8 .	20	2.5	2.5	2.6	2.7	2.7	22	22	1.9	1.9	1.6	0.5			SHAMARY DATA (RANKFIII I	W(FPA)	Slope	Sinuosity	Area A	Depth= D	ã	9															
	Width	(Feet)	0.0	5.6	2.5	2.0	1.5	0.7	9 7		1 5	0 0	0.8	0.2	1.4	-	0.0	n «	0.5	1 4	2.4	2.0	2.1	29.7		AY DATA	43.2	29.7	2.7	0 5	2.1	O	ional Curv															
																								TOTALS		SHMMA	A(BKF)	W(BKF)	Max d	Mean o	Entrenchment	Stream Type C	vea from Rural Reg															
	ſ																									_			ws=10.61																			
						LTOB									LBKF									LEOW				AL.		DEC-					KBN					000	RTOB							
1	96 11	94.83	94.61	94.46	93.95	93.80	93.53	93.05	92.7	95.90	92.24	92 12	91.90	91.70	91.49	91.34	91.03	90.80	90.22	80 06	89.80	89.81	89.71	89 52	89.28	88 94	88.83	88.79	88.88	60.33	89.55	89.59	89.93	91.02	91.45	91.97	92 13	92.81	92.13	93.41	93.67	09 38	98 05	96 20				
100	4 89	5.17	5.39	5.54	6.05	6.20	6.47	2.30	7 60	7.70	7.00	7.88	8.10	8.30	8.51	8.66	18.00	0.40	9.78	9.91	10.20	10.19	10.29	10.48	10.72	11.06	11.17	11.21	11.12	10.71	10.45	10.41	10.01	8 98	8 44	8.03	7.87	7.19	7.87	6.59	6.33	5.40	4 95	4 80				
100	100.00	100.00	100.00	100.00	100.001	100.00	100.00	100.00	1000	8000	100.00	100.00	100.00	100.00	100.00	100.00	00.00	100.00	100.00	100.00	100 00	100.00	100.001	100.00	100.00	100 00	100.00	100.00	100.00	0000	100.00	100.00	100.00	100.00	100 00	100 00	100.00	100,001	100.00	100.00	100.00	100 00	100 00	100 00				
	0	0	0	0	9	4	0	9 0	0 0	2 0	0 0	2	1	4	4	0, 1	0 4	0 0	1	3	1	9	0	0.1	w c	4	10	5	4.		9 9	0	0			10	0	0	0	00 0	0,0	9 0	0	0				

Cat Creek Preserve Tract (upper) Macon **County**

			PEBBLE C	OUNT					
Site: Cat C	reek						7/21/2003		
Party: Am	anda Todd	and George	Lankford				Preserve Tra	act Longitud	linal
				F	Particle Cou	nt			
Inches	Particle	Millimeter		Riffle	Run/Pool		Total No.		Cumulativ
	Silt/Clay	< 0.062	S/C	4	7		11	11%	11%
	Very Fine	.062125	S	3	1		4	4%	15%
	Fine	.12525	A	1	4		5	5%	20%
	Medium	.2550	N	7	8		15	15%	35%
	Coarse	.50 - 1.0	D	7	9		16	16%	51%
.0408	ery Coars	1.0 - 2.0	S	0	2		2	2%	53%
.0816	Very Fine	2.0 - 4.0		2	1		3	3%	56%
.1622	Fine	4.0 - 5.7	G	1	2		3	3%	59%
.2231	Fine	5.7 - 8.0	R	0	0		0	0%	59%
.3144	Medium	8.0 - 11.3	A	6	1		7	7%	66%
.4463	Medium	11.3 - 16.0	V	3	3		6	6%	72%
.6389	Coarse	16.0 - 22.6	E	5	7		12	12%	84%
.89 - 1.26	Coarse	22.6 - 32.0		4	2		6	6%	90%
1.26 - 1.77	Very Coars	32.0 - 45.0	S	4	3		7	7%	97%
1.77 - 2.5	Very Coarse	45.0 - 64.0		2	0		2	2%	99%
2.5 - 3.5	Small	64 - 90	С	0	0		0	0%	99%
3.5 - 5.0	Small	90 - 128	0	0	0		0	0%	99%
5.0 - 7.1	Large	128 - 180	В	0	0		0	0%	99%
7.1 - 10.1	Large	180 - 256	L	0	0		0	0%	99%
10.1 - 14.3	Small	256 - 362	В	0	0		0	0%	99%
14.3 - 20	Small	362 - 512	L	0	0		0	0%	99%
20 - 40	Medium	512 - 1024	D	0	0		0	0%	99%
40 - 80	rg- Very Lr	1024 - 2048	R	0	0		0	0%	99%
	Bedrock		BDRK	1	0		1	1%	100%
319-19-27			Totals	50	50		100	100%	100%

APPENDIX 3

PHOTO LOG

Photo Log
Cat Creek, Macon County, North Carolina

4. Upper Swartwout; grass pasture along right bank.

9. Waldroop Tract: Cattle crossing beside Waldroop barn looking upstream

13. Waldroop Tract: Lower section wide pool looking upstream, notice large tree to the right

19. Preserve Tract: Mid-channel point bar formed downstream of Ferguson Road culvert.

APPENDIX 4

MORPHOLOGY TABLE

Parameter	1 `	g Channel out) Enha		1	g Channe wout) Res	•	l	ng Chann Swartwou	`	1	isting Cha (Waldrooj		Existing	Channel	(Parker)	Existing	g Channel	(UT 2)	Existing	Channel	(UT 3)	Existing	Channel ((Preserve)	Existing	Channel	(UT 4)
Stream Type		C4			NA (C4)	÷		NA (Cb4)	*		NA (C4)	ł		NA (G4)	*		NA			NA			NA			NA (E)	
Drainage Area		1.2			1.2			0.9			2.5			2.6			0.47			0.24			3.4			0.17	
Dimension	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
BF Width (ft)			17.5			19.9			16.03			22.89			18.48			8.2			6.7			32.98			13.2
BF Cross Sectional Area (ft²)			17.1			16.74			20.22			39.12			40.34			12.92			6.88			50.23			6.2
BF Mean Depth (ft)			1			0.84			1.26			1.71			2.18			1.58			1.03			1.62			0.5
BF Max Depth (ft)			2.67			2			2.2			2.93			3.79			3.12			2.07			2.91			1.4
Width/Depth Ratio			17.86			23.69			12.72			13.39			8.48			5.19			6.5			21.7			27.9
Entrenchment Ratio			6.86			1.56			3.43			3.04			5.68			13.93			22.4			2.22			7.6
Wetted Perimeter (ft)			18.49			21.49			16.83			25.33			20.57			10.65			8.51			33.99			6.98
Hydraulic radius (ft)			0.93			0.78			1.2			1.54			1.96			1.21			0.81			1.48			0.45
Bank Height Ratio			1.53			1.32			1.41			1.37			1.38			1.33			1.5			1.52			1.3
Pool Arca/Riffle Arca			NA			NA			0.81			1.5			NA			NA			NA			1			NA
Max riffle depth/mean riffle depth			2.57			2.57			1.75			1.71			1.73			1.97			2.01			2.77			2.80
Max pool depth/mean riffle depth			2.66			2.66			1.92			2.73			NA			NA			NA	<u> </u>	L	3.46			NA
Pattern																									No. 1 TO SERVICE		
Channel Beltwidth (ft)																				<u> </u>							
Radius of Curvature (ft)																											
Meander Wavelength							1/ 0									ADI											
Meander Width ratio				AUL) LAC	KU	- ME	ANU	FK2=	CHA	NNE	LHA	2 RF	ENN	IUUL	HEU										
Meander Length ratio					1																<u> </u>						<u> </u>
Radius of Curvature/Riffle Width (ft)				<u> </u>				<u> </u>																			<u> </u>
Pool Length/Riffle Width	0.30	1.24	0.74	0.30	1.24	0.74	0.61	1.01	0.81	0.68	2.00	1.23	0.94	2.16	1.56	0.89	4.29	2.89	0.73	1.86	1.39	0.48	1.67	1.16	0.11	0.60	0.35
Pool to Pool Spacing/ Riffle Width	1.35	2.50	1.95	1.35	2.50	1.95	2.71	5.72	4.29	1.90	4.76	3.07	2.89	4.80	3.84	2.41	10.90	6.43	3.21	10.18	6.00	0.50	2.11	1.20	1.41	6.75	4.10
Profile																											
Pool length (ft)	5.68	23.27	13.82	5.68	23.27	13.82	9.85	16.18	13.02	15.61	46.69	28.15	17.66	40.65	29.23	7.32	35.2	23.7	4.91	12.47	9.32	22.31	77.85	54.32	1.42	7.94	4.58
Pool spacing (ft)	25.4	46.96	36.61	25.4	46.96	36.61	43.39	91.71	68.8	43.42	108.97	70.31	54.27	90.24	72.26	19.84	90	52.74	21.54	68.22	40.25	23.18	98.41	56.05	18.71	89.15	53.93
Riffle slope (ft/ft)	0.006	0.030	0.018	0.006	0.030	0.018	0.009	0.100	0.040	0.007	0.011	0.014	0.009	0.016	0.012	0.007	0.016	0.012	0.015	0.030	0.022	0.005	0.016	0.010	0.042	0.063	0.056
Pool slope (ft)	0.000	0.009	0.004	0.000	0.009	0.004	0.007	0.011	0.008	0.000	0.004	0.002	0.000	0.003	0.002	0.004	0.007	0.005	0.003	0.007	0.004	0.000	0.004	0.002	0.012	0.016	0.014
Run slope (ft)	0.020	0.054	0.035	0.020	0.054	0.035	0.011	0.044	0.024	0.006	0.017	0.012	0.010	0.012	0.011	0.018	0.028	0.023	0.011	0.034	0.024	0.020	0.042	0.029	0.082	0.090	0.086
Glide slope (ft)	0.000	0.010	0.005	0.000	0.010	0.005	0.002	0.106	0.023	0.001	0.005	0.003	0.000	0.006	0.003	0.003	0.005	0.004	0.007	0.009	0.008	0.002	0.007	0.005	0.007	0.013	0.010
Riffle Slope/Avg. Water Surface Slope	0.05	2.21	1.35	0.05	2.21	1.35	0.43	4.79	1.73	0.95	1.95	1.50	1.64	2.79	2.08	0.57	0.94	1.24	1.17	2.27	1.66	0.75	2.02	1.24	0.92	1.40	1.24
Run slope/Avg. Water Surface Slope	1.53	3.90	2.58	1.53	3.90	2.58	0.50	2.01	1.11	0.74	2.26	1.61	1.62	2.00	1.84	1.42	1.75	2.11	0.83	2.63	1.84	2.52	5.31	3.59	1.83	1.99	1.91
Pool Slope/Avg. Water Surface Slope	0.00	0.73	0.32	0.00	0.73	0.32	0.30	0.51	0.39	0.00	0.47	0.22	0.00	0.52	0.26	0.55	1.00	0.72	0.23	0.51	0.34	0.00	0.54	0.24	0.26	0.36	0.31
Glide Slope/Avg.Water Surface Slope	0.00	0.76	0.38	0.00	0.76	0.38	0.07	4.78	1.05	0.11	0.65	0.46	0.00	1.00	0.46	0.48	0.75	0.61	0.55	0.72	0.63	0.23	0.91	0.62	0.16	0.29	0.22
Substrate									_	1				_									·	T		ı	T
d50 (mm)			34.89			34.89			40.67		ļ	11.3			0.38		 	NA		 	NA	 		4			NA
d84 (mm)	333333		90			90	L		106.3		l	57.67		<u> </u>	55.45			NA NA	L		NA	L	L	32	MINERAL MARKET		NA
Additional Reach Parameters										ı — —	T			T					Γ	T	T		ı — —	I	.	i i i i i i i i i i i i i i i i i i i	T
Valley Length (ft)			870		ļ	690			440			1690			2150			240		<u> </u>	160	 	L	1730		ļ	105
Channel Length (ft)			880	↓	<u> </u>	752	ļ	ļ	470			1705			2280	_		240	ļ	ļ	160			1830	_		110
Valley Slope (ft)			0.0150		ļ	0.0139			0.0230		<u> </u>	0.0076		ļ	0.0062	_	1	0.0130		ļ	0.0130	 		0.0083	ļ		0.0480
Water Surface Slope (ft/ft)		ļ	0.0150			0.0150			0.0213			0.0077		<u> </u>	0.0058		_	0.0130		_	0.0130	 		0.0072	ļ		0.0450
Sinuosity			1.01	<u> </u>	1	1.01	<u> </u>		1.06	<u> </u>	<u></u>	1.01	<u> </u>	<u> </u>	1.06	<u> </u>	<u></u>	1 1		<u> </u>	1	<u> </u>	<u></u>	1.13	<u> </u>	<u> </u>	1.05

^{*}Channel has been significantly modified through channelization and is therefore difficult to classify using Rosgen system of classification for natural channels. Classification in parenthenses is closest match with natural channel.

A channel with low width/depth ratio without vegetation cannot be stable, and will widen and degrade. Streams that have been channelized or ditched, such as those on this project, typically have low widht to depth ratios (Rosgen, 2007).

Bank Height Ratios greater than 1.3 are indicative of incision and degradation- the flow must rise 30% higher than bankfull in order to reach the floodplain, which increases the depth and the velocity, and therefore the shear stress of the flow.

Parameter	1	nce Reach		Reference Reach- Bent Creek					
Stream Type		E4			C4				
Drainage Area	_	1.32			3.7				
Dimension	Min	Max	Avg	Min	Max	Avg			
BF Width (ft)			11.81			26.00			
BF Cross Sectional Area (ff)			15.34			65.00			
BF Mean Depth (ft)			1.30			2.50			
BF Max Depth (ft)			2.11			NA			
Width/Depth Ratio			9.08			10.40			
Entrenchment Ratio			28.11			5.00			
Wetted Perimeter (ft)			14.34			31.00			
Hydraulic radius (ft)			1.07			2.10			
Bank Height Ratio	1.03	1.05	1.04			NA			
Pool Area/Riffle Area			1.43			NA			
Max riffle depth/mean riffle depth			1.62			NA			
Max pool depth/mean riffle depth			2.51			NA			
Pattern	4040E0 (574-545)								
Channel Beltwidth (ft)	22.00	57.10	37.20	71.00	118.00	91.25			
Radius of Curvature (ft)	18.00	42.80	25.00	23.60	73.00	48.30			
Meander Wavelength	78.50	149.90	107.10	82.00	484.00	205.00			
Meander Width ratio	1.86	4.83	3.15	2.73	4.54	3.51			
Meander Length ratio	6.65	12.69	9.01	3.15	18.62	7.88			
Radius of Curvature/Riffle Width (ft)	1.52	3.62	2.12	0.91	2.81	1.86			
Pool Length/Riffle Width	1.83	3.10	2.67	2.07	6.08	3.48			
Pool to Pool Spacing/ Riffle Width	6.84	8.31	7.79	6.08	6.08	6.08			
Profile									
Pool length (ft)	12.98	20.86	18.02	53.87	158.12	90.49			
Pool spacing (ft)	79.48	96.97	88.23	158.12	158.12	158.12			
Riffle slope (ft/ft)	0.011	0.021	0.017	0.009	0.010	0.010			
Pool slope (ft)	0.003	0.004	0.003	0.001	0.002	0.002			
Run slope (ft)	0.012	0.039	0.029	0.011	0.014	0.012			
Glide slope (ft)	0.002	0.007	0.005	0.001	0.014	0.008			
Riffle Slope/Avg. Water Surface Slope	0.92	1.70	1.44	0.96	1.07	1.02			
Run slope/Avg. Water Surface Slope	1.05	3.23	2.42	1.10	1.42	1.26			
Pool Slope/Avg. Water Surface Slope	0.20	0.33	0.26	0.15	0.17	0.19			
Glide Slope/Avg. Water Surface Slope	0.14	0.56	0.40	0.09	1.42	0.78			
Substrate									
d50 (mm)			21.4		KANA AT 1000 1100	NA			
d84 (mm)			58.82			NA			
Additional Reach Parameters									
Valley Length (ft)			200			142			
Channel Length (ft)		†	288			271			
Valley Slope (ft)			0.0171			NA NA			
Water Surface Slope (ft/ft)	+		0.0171			0.0097			
Sinuosity	-	 	1.4		 	1.9			

Anderson destruction destruction destruction destruction destruction destructions and destructions destructio

Parameter	1	posed (Upout) Enha	•		posed (Le vout) Rest		Propose	ed (UT Swa	artwout)		osed (Wal		Proj	osed (Pai	rker)	Prop	osed (Pres	serve)	Pr	oposed (U	T2)	Pr	oposed (U	T3)	Pr	oposed (U	T4)
Stream Type		C4			C4			Cb4			C4			C4			C4			C4			C4			Cb4	
Drainage Area		1.2			1.2			0.9			2.5			2.6			3.4			0.47			0.24			0.17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dimension	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
BF Width (ft)			16.2			16.2			15			21.6			21.5			23.9			13			9.9			9.1
BF Cross Sectional Area (ft²)			22.4			22.4			18.9			38.8			39			47.7			12.75			7.4			6.3
BF Mean Depth (ft)			1.4		<u> </u>	1.4			1.3			1.8			1.8			2			0.98			0.75			0.69
BF Max Depth (ft)			2			2			1.8			2.34			2.6			2.6			1.5			1.15			1.10
Width/Depth Ratio			11.8			11.8			11.9			12			11.9			12			13.25			13.24			13.1
Entrenchment Ratio			>2.2			>2.2			>2.2			>2.2			>2.2			>2,2			>2.2			>2.2			>2.2
Wetted Perimeter (ft)			17			17			17.6			25.2			25.1			27.9			14.96			11,39			10.48
Hydraulic radius (ft)			1.32			1.32			1.07			1.54			1.55			1.71			0.85			0.65			0.60
Bank Height Ratio			1			1			1			1			1			1			1			1			1
Pool Area/Riffle Area			2			2			1.43			1.43			1.66			1.43		}	1.43			1.43			1.43
Max riffle depth/mean riffle depth			1.43			1.43	I		1.38			1.3			1.3			1.3			1.3			1.3			1.3
Max pool depth/mean riffle depth			2.3			2.3			2.2			1.9			1.9			1.9	-		1.9			1.9			1.9
Pattern																											
Channel Beltwidth (ft)	30.13	78.25	51.03	30.13	78.25	51.03	27.90	72.45	47.25	40.18	104.33	68.04	39.99	103.85	67.73	44.45	115.44	75.29	24.18	62.79	40.95	18.41	47.82	31.19	16.93	43.95	28.67
Radius of Curvature (ft)	24.62	58.64	34.34	24.62	58.64	34.34	22.80	54.30	135.15	32.83	78.19	45.79	32.68	77.83	45.58	36.33	86.52	50.67	19.76	47.06	27.56	15.05	35.84	20.99	13.83	32.94	19.29
Meander Wavelength	107.73	205.58	145.96	107.73	205.58	145.96	99.75	190.35	31.80	143.64	274.10	194.62	142.98	272.84	193.72	158.94	303.29	215.34	86.45	164.97	117.13	65.84	125.63	89.20	60.52	115.48	81.99
Meander Width ratio	1.86	4.83	3.15	1.86	4.83	3.15	1.86	4.83	3.15	1.86	4.83	3.15	1.86	4.83	3.15	1.86	4.83	3.15	1.86	4.83	3.15	1.86	4.83	3.15	1.86	4.83	3.15
Meander Length ratio	6.65	12.69	9.01	6.65	12.69	9.01	6.65	12.69	9.01	6.65	12.69	9.01	6.65	12.69	9.01	6.65	12.69	9.01	6.65	12.69	9.01	6.65	12.69	9.01	6.65	12.69	9.01
Radius of Curvature/Riffle Width (ft)	1.52	3.62	2.12	1.52	3.62	2.12	1.52	3.62	2.12	1.52	3.62	2.12	1.52	3.62	2.12	1.52	3.62	2.12	1.52	3.62	2.12	1.52	3.62	2.12	1.52	3.62	2.12
Pool Length/Riffle Width	1.83	3,10	2.67	1.83	3.10	2.67	1.83	3.10	2.67	1.83	3.10	2.67	1.83	3.10	2.67	1.83	3.10	2.67	1.83	3.10	2.67	1.83	3.10	2.67	1.83	3.10	2.67
Pool to Pool Spacing/ Riffle Width	6.84	8.31	7.79	6.84	8.31	7.79	6.84	8.31	7.79	6.84	8.31	7.79	6.84	8.31	7.79	6.84	8.31	7.79	6.84	8.31	7.79	6.84	8.31	7.79	6.84	8.31	7.79
Profile																								TO SEPTEMBER			STATE CONTRACTOR
Pool length (ft)	29.65	50.22	43.25	29.65	50.22	43.25	27.45	46.50	40.05	39.53	66.96	57.67	39.35	66.65	57,41	43.74	74.09	63.81	23.79	40.30	34.71	18.12	30.69	26.43	16.65	28.21	24.30
Pool spacing (ft)	110.81	134.62	126.20	110.81	134.62	126.20	102.60	124,65	116.85	147.74	179.50	168.26	147.06	178.67	167.49	163.48	198.61	186.18	88.92	108.03	101.27	67.72	82.27	77.12	62.24	75.62	70.89
Riffle slope (ft/ft)	NA	NA	NA	0.011	0.020	0.017	0.011	0.021	0.018	NA	NA	NA	0.005	0.009	0.007	NA	NA	NA	0.007	0.014	0.012	0.010	0.019	0.016	0.010	0.019	0.016
Pool slope (ft)	NA	NA	NA	0.002	0.004	0.003	0.013	0.040	0.030	NA	NA	NA	0.001	0.002	0.001	NA	NA	NA	0.002	0.003	0.002	0.002	0.004	0.003	0.002	0.004	0.003
Run slope (ft)	NA	NA	NA	0.012	0.037	0.028	0.003	0.004	0.003	NA	NA	NA	0.005	0.017	0.013	NA	NA	NA -	0.008	0.026	0.019	0.012	0.037	0.028	0.012	0.037	0.028
Glide slope (ft)	NA	NA	NA	0.002	0.006	0.005	0.002	0.007	0.005	NA	NA	NA	0.001	0.003	0.002	NA	NA	NA	0.001	0.004	0.003	0.002	0.006	0.004	0.002	0.006	0.004
Riffle Slope/Avg. Water Surface Slope	0.92	1.70	1.44	0.92	1.70	1.44	0.92	1.70	1.44	0.92	1.70	1.44	0.92	1.70	1.44	0.92	1.70	1.44	0.92	1.70	1.44	0.92	1.70	1.44	0.92	1.70	1.44
Run slope/Avg. Water Surface Slope	1.05	3.23	2.42	1.05	3.23	2.42	1.05	3.23	2.42	1.05	3.23	2.42	1.05	3.23	2.42	1.05	3.23	2.42	1.05	3.23	2.42	1.05	3.23	2.42	1.05	3.23	2.42
Pool Slope/Avg. Water Surface Slope	0.20	0.33	0.26	0.20	0.33	0.26	0.20	0.33	0.26	0.20	0.33	0.26	0.20	0.33	0.26	0.20	0.33	0.26	0.20	0.33	0.26	0.20	0.33	0.26	0.20	0.33	0.26
Glide Slope/Avg.Water Surface Slope	0.14	0.56	0.40	0.14	0.56	0.40	0.14	0.56	0.40	0.14	0.56	0.40	0.14	0.56	0.40	0.14	0.56	0.40	0.14	0.56	0.40	0.14	0.56	0.40	0.14	0.56	0.40
Substrate																											15 R144 500 4 Sec. 2016
d50 (mm)		L	NA		<u> </u>	NA	<u> </u>		NA			NA			NA			NA		ļ	NA		<u> </u>	NA	<u> </u>		NA
d84 (mm)			NA	Spicker/Stranswich		NA	L	<u> </u>	NA		Lorosina	NA			NA	2.688864015401k		NA			NA	<u> </u>	Atomika salik 1956 dilah	NA			NA
Additional Reach Parameters	_									1				1		_	•			1			rent de la companya d	ı	1	·	1
Valley Length (ft)			480			690			490			1690		ļ	1480		<u> </u>	1752	ļ		311	 	ļ	318	ļ		217
Channel Length (ft)			490			832	ļ	ļ	581	ļ	ļ	1859		ļ	1809		ļ	1827	ļ	<u> </u>	374	ļ		342			244
Valley Slope (ft)			0.0150	ļ	 	0.0139	ļ		0.0150	ļ	ļ	0.0076		<u> </u>	0.0062	 		0.0051			0.0096			0.0125			0.0276
Water Surface Slope (ft/ft)			0.0147			0.0116		ļ	0.0125		ļ	0.0069			0.0052	ļ	ļ	0.0049			0.0080		<u> </u>	0.0114	<u> </u>		0.0251
Sinuosity			1.02	<u></u>	<u> </u>	1.2	1	<u></u>	1.2	L	<u></u>	1.1			1.2	1		1.04	L	1	1.2	<u> </u>	<u> </u>	1.1	L		1.1

Approximate descriptions descri

APPENDIX 5

SOIL DATA AND USACE WETLAND DATA FORMS

Cat Creek Soil Profiles

15-26+

10 YR 7/2

5 YR 4/6

Swartou Profile 1	t Tract (Soil Boring B-	30)		7-30-03 Project 67812
Depth	Matrix	Mottles	Mottle Abundance	Texture
0-6	7.5 YR 4/4	was 1004		Loam-small cobbles and rocks
6-12	10 YR 3/6			Loam-small cobbles and rocks
12-20	7.5 YR 4/4			Sandy loam-gravelly
20-27	7.5 YR 5/6			Sandy clay-gravelly
22-35	7.5 YR 8/1	7.5 YR 6/6	25%	
		7.5 YR 5/8	4%	
				Cobble layer at 12 inches
				7 20 02
Swartou				7-30-03
	(Soil Boring B-			Project 67812
Depth	Matrix	Mottles	Mottle Abundance	Texture
0-4	7.5 YR 3/3			Loam
4-13	7.5 YR 4/4	5 YR 4/6	20%	Silt loam- micaceous
		5 YR 5/2	10%	
13-15	7.5 YR 3/1	5 YR 3/4	15%	Silt loam

Swartout Tract7-30-03Profile 3 (Soil Boring B-32)Project 678							
Depth	Matrix	Mottles	Mottle Abundance	Texture			
0-4	7.5 YR 2.5/2			Loam			
4-21	7.5 YR 5/2	2.5 YR 4/4	12%	Silt loam			
21-27	10 YR 5/1	7.5 YR 4/6	35%	Silt loam			
27-41	10 YR 2.5/1			Silt–partially decomposed organic material Gravel at 40 inches			

45%

Sandy clay

Swartou	Swartout Tract-Upper Field 7-30-03							
Soil Bor	Project 67812							
Depth	Matrix	Mottles	Mottle Abundance	Texture				
0-20	2.5 YR 4/4			Loam				
20-24	5 YR 4/4	5 YR 4/6	7%	Silt loam				
24-33	7.5 YR 4/1	7.5 YR 5/8	20%	Sandy loam				
33-47	7.5 YR 2.5/1	7.5 YR 6/2	5%	Sandy loam-small gravel				

Parker Soil Bor	Fract ing B-46			7-30-03 Project 67812
Depth	Matrix	Mottles	Mottle Abundance	Texture
0-20	5 YR 5/6	5 YR 3/3	20%	Silt loam
		7.5 YR 3/4		-saprolite-rocklike
		2.5 YR 4/8		-saprolite-rocklike
20-26	2.5 YR 4/4	7.5 YR 5/1	30%	Silt loam-
		7.5 YR 3/4		-saprolite-rocklike
		2.5 YR 4/8		-saprolite-rocklike
26-39	7.5 YR 4/1	7.5 YR 5/2	5%	Silt clay-small rounded gravel and partially decomposed organic material

Parker T	Tract			10-2-03
Data Poir	nt DP-1 - Hydric	;		Project 67812
Depth	Matrix	Mottles	Mottle Abundance	Texture
0-3	7.5 YR 3/3			Silt loam
3-6	7.5 YR 3/3	7.5 YR 4/1	25%	Silt loam-
6-11	7.5 YR 7/2	5 YR 5/8	20%	Clay loam
11-17	7.5 YR 6/1	10 YR 5/8	30%	Sandy clay
17-26+	7.5 YR 4/1			Sandy loam

Parker T	ract			10-2-03
Data Poir	nt DP-2 - Hydric			Project 67812
Depth	Matrix	Mottles	Mottle Abundance	Texture
0-8	7.5 YR 3/2			Silt loam
8-12	7.5 YR 4/2	7.5 YR 3/4	10%	Silt
12-18+	N 3/-	***		Silt loam-

Parker T	Parker Tract 10-3-03							
Data Point DP-3 – Non-hydric Proje								
Depth	Matrix	Mottles	Mottle Abundance	Texture				
0-15	7.5 YR 3/4			Silt loam and loam				
15-18	5 B 4/1	7.5 YR 3/4	10%	Silt clay loam				
18-26+	7.5 YR 6/1	5 YR 4/6	35% to 45% at 26 in	Sandy clay				

Preserve	Preserve Tract 7-31-03							
Data Poir	nt DP-4 – Hydri	Project 67812						
Depth	Matrix	Mottles	Mottle Abundance	Texture				
0-2	5 YR 3/3			Sandy clay loam				
2-15	5 YR 2.5/1	5 YR 5/1	40%	Silt clay loam				
		5 YR 6/6	8%					
15-31+	5 YR 5/1	5 YR 2.5/1	45%	Sandy loam				

Preserve	Tract	8-1-03				
Data Poir	nt DP-5 - Non-	hydric (Non-we	etland)	Project 67812		
Depth	Matrix	Mottles	Mottle Abundance	Texture		
0-2	7.5 YR 3/2			Silty clay loam		
2-9	10 YR 3/6		NO. 500	Loam		
9-14	5 YR 3/2			Silt loam		
14-25	5 YR 3/1	5 YR 3/3	3%	Silty clay loam		
25-34+	5 YR 5/1	5 YR 4/6	10%	Clay-massive		

Applicant/Owner: NCDOT Investigator: George Lankford Do Normal Circumstances exist on the site? Yes No X Is the site significantly disturbed (Atypical Situation)? Yes X No Transect ID: Parker Tract Is the area a potential Problem Area? Yes X No Plot ID: DP-1 VEGETATION County: Macon State: NC Community ID: Hydric Soil 3 Transect ID: Parker Tract Plot ID: DP-1	Project/Site:	Cat Creek			Date:	10/2/2003	
Investigator: George Lankford Do Normal Circumstances exist on the site? Do Normal Circumstances exist on the site? No X Community ID: Hydric Soil 3 Is the site significantly disturbed (Aspicial Situation)? Yes X No Transcet ID: Parker Tract (If needed, explain in remarks.) VEGETATION Dominant Plant Species Stratum Indicator Andropogon virginicus Herb FAC Joness efficus Herb FACV Vernonia noveboracensis Herb FACV Vernonia noveboracensis Herb FACW Vernonia noveboracensis He		NCDOT			County: Macon		
Cif needed, explain in remarks.		George Lankfor	d		State: NC		
Dominant Plant Species Stratum Indicator Andropogon virginicus Herb FAC Aurous effissus Herb FACW Solidago canadensis Herb FACW	Is the site significantly disturbed is the area a potential Problem	ed (Atypical Situation Area?	n)?	Yes No _X Yes _X No Yes _X No	Transect ID: Parker Tract		
Andropogon virginicus	VEGETATION						
Juncus effusus	Dominant Plant Species	Stratum	Indicator	Dominant Plant Species	Stratum	Indicator	
Solidago canadensis	Andropogon virginicus	Herb	FAC-				
Vernonia noveboracensis	Juncus effusus	Herb	FACW+				
Aster puniceus Herb OBL Dioda virginiana Herb FACW Cyperus strigosus Herb FACW Cyperus strigosus Herb FACW Percent of Dominant Species that are OBL, FACW or FAC (excluding FAC-) 71 Remarks: Area mowed in July/August HYDROLOGY Recorded Data (Describe in Remarks:) Wetland Hydrology Indicators:	Solidago canadensis	Herb	FACU				
Diodia virginiana	Vernonia noveboracensis	Herb	FAC+				
Percent of Dominant Species that are OBL, FACW or FAC (excluding FAC-) 71	Aster puniceus	Herb	OBL				
Percent of Dominant Species that are OBL, FACW or FAC (excluding FAC-) Remarks: Area mowed in July/August HYDROLOGY Recorded Data (Describe in Remarks:) Stream, Lake or Tide Gauge Acrial Photographs Other X No Recorded Data Available Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil: Depth of Surface Water: Depth to Saturated Soil: Depth to Satu	Diodia virginiana	Herb	FACW				
Remarks: Area mowed in July/August HYDROLOGY Recorded Data (Describe in Remarks:) Stream, Lake or Tide Gauge Acrial Photographs Other X Saturated in Upper 12 inches X No Recorded Data Available Water Marks Drift Lines Field Observations: Sediment Deposits Drainage Patterns in Wetlands Depth of Surface Water: Oxidized Root Channels in Upper 12 inches Water-Stained Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 inches Water-Stained Leaves Local Soil Survey Data Depth to Saturated Soil: It in.) FAC-Neutral Test Other (Explain in Remarks)	Cyperus strigosus	Herb	FACW				
Remarks: Area mowed in July/August HYDROLOGY Recorded Data (Describe in Remarks:) Stream, Lake or Tide Gauge Acrial Photographs Other X Saturated in Upper 12 inches X No Recorded Data Available Water Marks Drift Lines Field Observations: Sediment Deposits Drainage Patterns in Wetlands Depth of Surface Water: Oxidized Root Channels in Upper 12 inches Water-Stained Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 inches Water-Stained Leaves Local Soil Survey Data Depth to Saturated Soil: It in.) FAC-Neutral Test Other (Explain in Remarks)							
Remarks: Area mowed in July/August HYDROLOGY Recorded Data (Describe in Remarks:) Stream, Lake or Tide Gauge Acrial Photographs Other X Saturated in Upper 12 inches X No Recorded Data Available Water Marks Drift Lines Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil: Depth to Saturated Soil: Metland Hydrology Indicators: Primary Indicators: Arial Photographs Unundated X Saturated in Upper 12 inches Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 inches Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)			l				
Recorded Data (Describe in Remarks:) Stream, Lake or Tide Gauge Acrial Photographs Other X No Recorded Data Available Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil: Depth to Saturated Soil: Wetland Hydrology Indicators: Primary Indicators: Inundated X Saturated in Upper 12 inches Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 in Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)			······································				
Stream, Lake or Tide Gauge Acrial Photographs Other X No Recorded Data Available Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil: Depth to Saturated Soil: Stream, Lake or Tide Gauge Inundated X Saturated in Upper 12 inches Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 in Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)	HYDROLOGY						
Stream, Lake or Tide Gauge Acrial Photographs Other X No Recorded Data Available Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil: Depth to Saturated Soil: Stream, Lake or Tide Gauge Inundated X Saturated in Upper 12 inches Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 in Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)	Recorded Data (Describe	in Remarks:)	****	Wetland Hydro	logy Indicators:		
Other X Saturated in Upper 12 inches Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil: Depth to Saturated Soil: Other (Explain in Remarks) X Saturated in Upper 12 inches Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 in Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)	•			1			
Other X Saturated in Upper 12 inches Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 in Water-Stained Leaves Local Soil Survey Data Depth to Saturated Soil: 10 (in.) X Saturated in Upper 12 inches Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 in Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)				Inunda	ated		
Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil: Other (Explain in Remarks)				X Satura	ted in Upper 12 inc	ches	
Field Observations: Depth of Surface Water: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil: Depth to Saturated Soil: Depth to Saturated Soil: Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 in Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)	X No Recorded	l Data Available		Water	Marks		
Depth of Surface Water: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil: Depth to Saturate				Drift I	Lines		
Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil: 10 (in.) Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 in Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)	Field Observations:				•		
Depth to Free Water in Pit: Depth to Free Water in Pit: Depth to Saturated Soil: 10 (in.) Oxidized Root Channels in Upper 12 in Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)					-		
Depth to Free Water in Pit: Depth to Saturated Soil: 10 (in.) Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)	Depth of Surface Water:(in.)				•	• '	
Depth to Saturated Soil: Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)				I		in Upper 12 in.	
Depth to Saturated Soil: 10	Depth to Free Water in Pit:		_(in.)				
Other (Explain in Remarks)	Double to Cotomoted Coils 10 (in)				•		
Remarks:	Depth to Saturated Soil:		_ ^(in.)	1		ks)	
	Remarks:						
	•						

Community ID: Hydric Soil 3 Transcet ID: Parker Tract Plot ID: DP-1	Project/Site: Date:	Cat Creek 10/2/2003

Map Unit Name (Series and Phase): Taxonomy Subgroup:		Nikwasi, fine sand	dy loam, 0-2%		Drainage Class: <u>poorly or very poorly</u> Confirm Mapped Type?		
		mesic Cumulic Hi	umaquepts			Yes X No	
Profile Descripti	ion:						
Depth		Matrix Color	Mottle Colors	Mottle	;	Texture, Concretions,	
(inches)	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/C	ontrast	Structure, etc.	
0-3		7.5 YR 3/3				Silt Loam	
3-6		7.5 YR 3/3	7.5 YR 4/1	25%		Silt Loam	
6-11	T	7.5 YR 7/2	5 YR 5/8	20%		Clay Loam	
11-17		7.5 YR 6/1	10 YR 5/8	30%		Sandy Clay	
17-26+		7.5 YR 4/1				Sandy Loam	
X Remarks:	Sulfidic Odor Aquic Moisture R Reducing Conditi Gleyed or Low-C	ions			Listed o	c Streaking in Sandy Soils on Local Hydric Soils List on National Hydric Soils List Explain in Remarks)	
	ETERMINATIO						
	egetation Present?			Yes No			
Wetland Hydrol			***************************************	Yes No			
Hydric Soils Pro	esent?		_X	Yes No			
Is this Samplin	ng Point Within a	ı Wetland?	X	Yes No			
Remarks:	Data Point loca Site is on fairwa	ıted near Parker ga ay of abandoned go	nuge 1 - at a bearing olf course, There is a	of 325 degrees at evidence of soil ma	50 feet mipulatio	n across the site.	

Marie esta

Project/Site:	Cat Creek			Date: 10	0/2/2003	
Applicant/Owner:	NCDOT			County: M		
Investigator:	George Lankford	1		State: N		
and the state of t	See ge Bannjore	-				
Do Normal Circumstances exist	on the site?		Yes No X	Community ID: H	ydric Soil 3	
Is the site significantly disturbed		υ)?	Yes No _X Yes _X No Yes _X No	Transect ID: P		
Is the area a potential Problem A		-y -	Yes X No	Plot ID: \overline{D}		
(If needed, explain in remarks.				1		
(ii needed, explain in remarks.	<u>′</u>					
VEGETATION						
Dominant Plant Species	Stratum	Indicator	Dominant Plant Species	Stratum	Indicator	
Rubus argutus	Herb	FACU				
Juncus effusus	Herb	FACW+				
Solidago canadensis	Herb	FACU				
Vernonia noveboracensis	Herb	FAC+				
Cyperus strigosus	Herb	FACW				
Dichanthelium clandestinum	Herb	FACW				
Clematis virginiana	Herb	FAC+				
		<u> </u>				
HYDROLOGY						
Recorded Data (Describe in	Remarks:)		Wetland H	ydrology Indicators:		
Stream, Lake of	*			Primary Indicators:		
	_		Timary :			
Aeriai Photogr	aphs					
Aerial Photogr Other	aphs		In	Indicators: undated	cs	
	•		In	Indicators:	es	
Other	•		In X Sa W	Indicators: undated iturated in Upper 12 inch	es	
Other	•		In	Indicators: undated iturated in Upper 12 inch ater Marks	es	
Other X No Recorded I	•		In X Sa W Di Sc Sc Sc Sc Sc Sc Sc S	Indicators: undated iturated in Upper 12 inch fater Marks rift Lines		
Other X No Recorded I	•	(in.)	In X Sa W Di Sc X Di	Indicators: undated aturated in Upper 12 inch fater Marks rift Lines ediment Deposits	nds	
Other X No Recorded I Field Observations:	•	_(in.)	In X Sa W Di Sc X Di Secondar	Indicators: undated aturated in Upper 12 inch fater Marks rift Lines ediment Deposits rainage Patterns in Wetla	nds equired):	
Other X No Recorded I Field Observations: Depth of Surface Water:	•	_(in.)	In X Sa W Di Sc X Di Secondar O:	Indicators: undated attrated in Upper 12 inch attrated warks rift Lines ediment Deposits rainage Patterns in Wetla ry Indicators (2 or more r	nds equired):	
Other X No Recorded I Field Observations:	•	•` ′	In X Sa W Do Sc X Do Secondar Oo W	Indicators: undated attrated in Upper 12 inch attrated in Upper 12 indicators (2 or more r attrated in Upper 12 indicators (2 or more r attrated in Upper 12 indicators (2 or more r attrated in Upper 12 inch attrated in Upper 1	nds equired):	
Other X No Recorded I Field Observations: Depth of Surface Water: Depth to Free Water in Pit:	Data Available	_(in.)	In X Sa W Do Sc X Do Secondar Oo W Loo	Indicators: undated attracted in Upper 12 inch fater Marks rift Lines ediment Deposits rainage Patterns in Wetla ry Indicators (2 or more r xidized Root Channels in fater-Stained Leaves	nds equired):	
Other X No Recorded I Field Observations: Depth of Surface Water:	•	_(in.)	In X Sa W Do Sc X Do Secondar Oo W Lc F /	Indicators: undated attracted in Upper 12 inch fater Marks rift Lines ediment Deposits rainage Patterns in Wetla ry Indicators (2 or more r xidized Root Channels in fater-Stained Leaves ocal Soil Survey Data	nds equired): 1 Upper 12 in.	
Other X No Recorded I Field Observations: Depth of Surface Water: Depth to Free Water in Pit:	Data Available	_(in.)	In X Sa W Do Sc X Do Secondar Oo W Lc F /	Indicators: undated attracted in Upper 12 inch fater Marks rift Lines ediment Deposits rainage Patterns in Wetla ry Indicators (2 or more r xidized Root Channels in fater-Stained Leaves ocal Soil Survey Data AC-Neutral Test	nds equired): 1 Upper 12 in.	
Other X No Recorded I Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil:	Data Available	_(in.)	In X Sa W Do Sc X Do Secondar Oo W Lc F /	Indicators: undated attracted in Upper 12 inch fater Marks rift Lines ediment Deposits rainage Patterns in Wetla ry Indicators (2 or more r xidized Root Channels in fater-Stained Leaves ocal Soil Survey Data AC-Neutral Test	nds equired): 1 Upper 12 in.	
Other X No Recorded I Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil:	Data Available	_(in.)	In X Sa W Do Sc X Do Secondar Oo W Lc F /	Indicators: undated attracted in Upper 12 inch fater Marks rift Lines ediment Deposits rainage Patterns in Wetla ry Indicators (2 or more r xidized Root Channels in fater-Stained Leaves ocal Soil Survey Data AC-Neutral Test	nds equired): 1 Upper 12 in.	

Project/Site: Cat Creek	Community ID: Hydric Soil 3
Date: 10/2/2003	Transect ID: Parker Tract
	Plot ID: DP-2

Map Unit Name (Series and Phase): Taxonomy Subgroup:		Nikwasi, fine sand	dy loam, 0-2%		Drainag Confirm	n Mapped Type?		
		mesic Cumulic Hi	umaquepts			Yes No		
Profile Descript	ion:			* *				
Depth	** *	Matrix Color	Mottle Colors	Mottle		Texture, Concretions,		
(inches)	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Co	mtrast	Structure, etc.		
0-8		7.5 YR 3/2	7.5 VD 2/4	100/		Silt Loam		
8-12		7.5 YR 4/2	7.5 YR 3/4	10%		Silt		
12-18+	 	N 3/-				Silt Loam		
	<u> </u>							
Hydric Soil Ind	icators:					J.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
•								
ı	Histosol				Concreti	ons		
	Histic Epipedon				High Or	ganic Content in Surface Layer in Sandy Soils		
	Sulfidic Odor				Organic Streaking in Sandy Soils Listed on Local Hydric Soils List			
	Aquic Moisture R	Regime						
*					Listed on National Hydric Soils List			
	Reducing Conditi	ions				n National Hydric Solls List		
X	Reducing Conditi Gleyed or Low-C					n National Hydric Solis List Explain in Remarks)		
	_		***************************************			•		
X Remarks:	_					•		
	_					•		
	_					•		
	_					•		
Remarks:	_	Chroma Colors				•		
Remarks: WETLAND D	Gleyed or Low-C	Chroma Colors				•		
Remarks: WETLAND D	Gleyed or Low-C ETERMINATIO egetation Present?	Chroma Colors	X	Yes No		•		
Remarks: WETLAND D Hydrophytic Vo Wetland Hydro	Gleyed or Low-C ETERMINATIO egetation Present?	Chroma Colors	<u> X</u>	Yes No		•		
Remarks: WETLAND D	Gleyed or Low-C ETERMINATIO egetation Present?	Chroma Colors	<u> X</u>			•		
Remarks: WETLAND D Hydrophytic Vo Wetland Hydro Hydric Soils Pr	Gleyed or Low-C ETERMINATIO egetation Present?	Chroma Colors ON	X	Yes No		•		
Remarks: WETLAND D Hydrophytic Vo Wetland Hydro Hydric Soils Pr	Gleyed or Low-C ETERMINATIO egetation Present? logy Present? esent? ng Point Within a	ON Wetland?	X	Yes No Yes No Yes No	Other (E	explain in Remarks)		

Project/Site:	Cat Creek					10/3/2003	
Applicant/Owner:	NCDOT	-1				Macon	
Investigator:	George Lankfor	·d			State:	NC	
Do Normal Circumstances exist	on the site?		Yes No Yes X No Yes X No	X	Community ID:	Non-hvdric soil	
Is the site significantly disturbed		n)?	Yes X No			Parker Tract	
Is the area a potential Problem A			Yes X No		Plot ID:	DP-3	
(If needed, explain in remarks	.)						
VEGETATION							
Dominant Plant Species	Stratum	Indicator	Dominant Plan	t Species	Stratum	Indicator	
Plantago lanceolata	Herb	FAC					
Solanum carolinense	Herb	FACU					
Cyrilla racemiflora	Herb	FACW					
Tridens flavus	Herb	FACU					
Verbesina alternifolia	Herb	FAC					
Andropogon virginicus	Herb	FAC-					
Remarks: Area mowed in Herbaceous vo	n July/August. egetatio present onl	'y.					
HYDROLOGY							
Recorded Data (Describe in	n Remarks:)			Wetland Hy	drology Indicators:		
Stream, Lake	or Tide Gauge			Primary I	ndicators:		
Acrial Photogr	raphs			Inu	ndated		
Other				X Saturated in Upper 12 inches			
X No Recorded 1	Data Available			Wa	iter Marks		
					ft Lines		
Field Obscrvations:					liment Deposits		
					ainage Patterns in Wet		
Depth of Surface Water:		_(in.)			Indicators (2 or more		
					idized Root Channels	in Upper 12 in.	
Depth to Free Water in Pit:		_(in.)			ter-Stained Leaves		
Double to Cotonic 1 C 3	- 20	(:)			cal Soil Survey Data		
Depth to Saturated Soil:	>26	_ (in.)			C-Neutral Test	1>	
				Oth	ner (Explain in Remark	KS)	
Remarks:							
Remarks.							

Project/Site: Cat Creek Date: 10/3/2003	Community ID: <i>Non-hydric soil</i> Transect ID: <i>Parker Tract</i> Plot ID: <i>DP-3</i>
SOILS	

poorly or very poorly Drainage Class: Map Unit Name Nikwasi, fine sandy loam, 0-2% Confirm Mapped Type? (Series and Phase): Yes Taxonomy Subgroup: mesic Cumulic Humaquepts No Profile Description: Texture, Concretions, Matrix Color Mottle Colors Mottle Depth (Munsell Moist) (Munsell Moist) Abundance/Contrast Structure, etc. (inches) Horizon Silt Loam and Loam 0-15 7.5 YR 3/4 5 B 4/1 7.5 YR 3/4 10% Silty Clay Loam 15-18 18-26+ 7.5 YR 6/1 7.5 YR 4/6 35% to 45% with depth Sandy Clay Hydric Soil Indicators: Histosol Concretions High Organic Content in Surface Layer in Sandy Soils Histic Epipedon Sulfidic Odor Organic Streaking in Sandy Soils Aquic Moisture Regime Listed on Local Hydric Soils List Listed on National Hydric Soils List Reducing Conditions X Gleyed or Low-Chroma Colors Other (Explain in Remarks) Remarks: WETLAND DETERMINATION X No Hydrophytic Vegetation Present? Yes Wetland Hydrology Present? Hydric Soils Present? Yes Is this Sampling Point Within a Wetland? Yes Site is on fairway of abandoned golf course. There is evidence of soil manipulation across the site. Remarks:

Project/Site:	Cat Creek			Date: 7/31/2003			
Applicant/Owner:	NCDOT			County: Macon			
Investigator:	George Lankfore	d		State: NC			
Do Normal Circumstances exist Is the site significantly disturbed Is the area a potential Problem A (If needed, explain in remarks.	l (Atypical Situation Arca?	n)?	Yes No _X Ycs No Yes No _X	Community ID: Wetland-Old Pond Transcet ID: Preserve Tract Plot ID: DP-4			
VEGETATION							
Dominant Plant Species	Stratum	Indicator	Dominant Plant Species	Stratum Indicator			
Dichanthelium clandestinum	Herb	FACW					
Eupatorium perfoliatum	Herb	FACW+					
Aster puniceus	Herb	OBL					
Mimulus ringens	Herb	OBL					
Impatiens capensis	Herb	FACW					
Polygonum sagittatum	Herb	OBL					
Juncus effusus	Herb	FACW+					
Clematis virginiana	Vine	FAC+					
HYDROLOGY							
Recorded Data (Describe in	1 Remarks:)		Wetland Hydro	logy Indicators:			
Stream, Lake of				Primary Indicators:			
Acrial Photogr	-			Inundated			
Other	-		X Satura	ted in Upper 12 inches			
X No Recorded I	Data Available		Water				
			Drift L				
Field Observations:				ent Deposits			
				ge Patterns in Wetlands			
Depth of Surface Water:		_(in.)		dicators (2 or more required):			
		<i>(</i> :)		ed Root Channels in Upper 12 in.			
Depth to Free Water in Pit:	4	_ ^(in.)		Stained Leaves			
Donth to Cotomated Call.	n	(in)		Soil Survey Data Neutral Test			
Depth to Saturated Soil:	0	_ (m.)		(Explain in Remarks)			
P. I	*****						
Remarks:							
<u> </u>		·					

Project/Site: Cat Creck Date: 7/31/2003	Community ID: Wetland-Old Pond Transect ID: Preserve Tract Plot ID: DP-4

Map Unit Name (Series and Phase):		Udorthents-Urba	n Land complex, 0-5	5%	,	ge Class:
Taxonomy Sub	ogroup:	Udorthents				
Profile Descrip	otion;		<u></u>			
Depth		Matrix Color	Mottle Colors	Mottle		Texture, Concretions,
(inches)	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Co	ontrast	Structure, etc.
0-2	T	5 YR 3/3		T		Sandy Clay Loam
2-15		5 YR 2.5/1	5 YR 5/1	40%		Silty Clay Loam
			5 YR 5/6	8%		
15-31+	1	5 YR 5/1	5 YR 2.5/1	45%		Sandy Loam
						1
	<u> </u>	1				
X Remarks:	Histic Epipedon Sulfidic Odor Aquic Moisture R Reducing Conditi Gleyed or Low-C Area upslope fr	ions	e into old pond.		Organic Listed o	rganic Content in Surface Layer in Sandy Soils c Streaking in Sandy Soils on Local Hydric Soils List on National Hydric Soils List Explain in Remarks)
WETLAND E	DETERMINATIO)N				
	DETERMINATIO		X	Yes No	· · ·	
Hydrophytic V	/egetation Present?		XX			
Hydrophytic V Wetland Hydro	Vegetation Present?		***************************************	Yes No		
Hydrophytic V	Vegetation Present?		<u> </u>	Yes No		
Hydrophytic V Wetland Hydro Hydric Soils P	Vegetation Present?	?	X X	Yes No		

Project/Site:	Cat Creek			Date:	8/1/2003		
Applicant/Owner:	NCDOT			County:			
Investigator:	George Lankford			State:			
invostigator.	George Banayora						
Do Normal Circumstances exist	on the site?		Yes No X	Community ID:	Non-wetland		
Is the site significantly disturbed)?	Yes No Yes X No Yes X No		Preserve Tract		
Is the area a potential Problem A	, ,,	•	Yes X No	Plot ID:			
(If needed, explain in remarks.)				·			
VEGETATION							
Dominant Plant Species	Stratum	Indicator	Dominant Plant Species	Stratum	Indicator		
Dichanthelium clandestinum	Herb	FACW					
Rubus argutus	Herb	FACU					
	small breached pon nowed and only sho		vegetation present.				
HYDROLOGY							
Recorded Data (Describe in	Remarks:)		Wetland Hydro	logy Indicators:			
Stream, Lake o			Primary Indic				
Acrial Photogr			1	Inundated			
Other			Satura	Saturated in Upper 12 inches			
X No Recorded I	Data Available			Water Marks			
			Drift L	Drift Lines			
Field Observations:			Sedim	ent Deposits			
			i	ige Patterns in We			
Depth of Surface Water:		(in.)		dicators (2 or more			
				zed Root Channels	in Upper 12 in.		
Depth to Free Water in Pit:		(in.)		-Stained Leaves			
				Soil Survey Data			
Depth to Saturated Soil:	>34	(in.)		Neutral Test			
			Other	(Explain in Remar	ks)		
			- I mile to the second				
Remarks:							

Project/Site: Cat Creek	Community ID: Non-wetland
Date: 8/1/2003	Transcet ID: Preserve Tract
	Plot ID: <i>DP-5</i>

Appropriate and a specific

Special production

Market School Sign

Map Unit Name (Series and Phase): Taxonomy Subgroup:		Udorthents-Urban Land complex, 0-5% Udorthents				Drainage Class: n/a Confirm Mapped Type? X Yes No		
Depth		Matrix Color	Mottle Colors	Mottle		Texture, Concretions,		
(inches)	Horizon	(Munsell Moist)	(Munsell Moist)	Abundance/Co	ontrast	Structure, etc.		
0-2		7.5 YR 3/2				Silty Clay Loam		
2-9		10 YR 5/6				Loam		
9-14		5 YR 3/2				Silt Loam		
14-25		5 YR 3/1	5 YR 3/3	3%		Silty Clay Loam		
25-34+		5 YR 3/1	5 YR 4/6	10%		Clay - massive		
X Remarks:	Histosol Histic Epipedon Sulfidic Odor Aquic Moisture R Reducing Conditi Gleyed or Low-C	ons	e into old pond.		Organic Listed o Listed o	ganic Content in Surface Layer in Sandy Soils Streaking in Sandy Soils n Local Hydric Soils List n National Hydric Soils List explain in Remarks)		
WETLAND DE	TERMINATIO							
			-	Yes X No				
Hydrophytic Veg				Yes X No				
Wetland Hydrolo				Yes No				
			X	_ 10010				

APPENDIX 6

HYDROGRAPHS AND PRECIPITATION DATA

APPENDIX 6

HYDROGRAPHS AND PRECIPITATION DATA

Cat Creek Mitigation Site Macon County, NC

Ω - Gauge S3 - Gauge S6 Gauge S8 Z 0 S 4 -Gauge S2 -Gauge S5 Gauge S9 **J** 2003 Jurisdictional Water Table Σ -Gauge S4 -Gauge S7 Gauge S1 4 Σ ш January 2004 -15 -20 -35 Groundwater Elevation (Inches)

All Gauges in Swartout Tract

APPENDIX 7

SEDIMENT TRANSPORT

		ENTRAINMENT C	ALCULATIO	ON FORM
Stream:		Cat Creek	Reach:	Swartwout (field)
Team:		AJT and GKL	Date:	Jun-03
		Informati	on Input Area	
43	D ₅₀	Riffle bed material D50 (n	nm)	
14	D [^] 50	Bar sample D50 (mm)		
60.0	Di	Largest particle from bar s	sample (mm)	0.20 (feet) 304.8 mm/foot
0.012	S _e	Existing bankfull water sur	face slope (ft/ft)	
1.46	d _e	Existing bankfull mean de	oth (ft)	
1.59	R	Hydraulic Radius of Riffle	Cross Section (f	ft)
1.65	g _s	Submerged specific weigh	t of sediment	
		Calculation of Critical D)imensionless	Shear Stress
3.07	D ₅₀ /D ² ₅₀	If value is between 3-7	Equation 1 v	will be used: $t_{ci}^* = 0.0834(D_{50}/D_{50}^*)^{-0.872}$
1.40	D _i /D ₅₀	If value is between 1.3-3.0		vill be used: $t_{ci}^* = 0.0384(D_i/D_{50})^{-0.887}$
0.0313	t [*] ci	Critical Dimensionless Shea	r Stress	Equation used: 1
Calcu	ılation of Bank	full Mean Depth Required	for Entrainmer	nt of Largest Particle in Bar Sample
0.85	d _r	Required bankfull mea	an depth (ft)	$d_r = \underbrace{t_{ci}g_sD_i}_{S_e}$
1.46	de	Existing bankfull mea	n depth (ft)	
Calcula	tion of BKF W	ı ater Surface Slope Require	ed for Entrainm	nent of Largest Particle in Bar Sample
0.0070	S _r	Required bankfull water s	urface slope (ft)	$S_r = \underbrace{t_{ci}g_sD_i}_{d_e}$
0.0120	Se	Existing bankfull water su	ırface slope (ft)	
		Sediment Tra	nsport Validati	ion
0.00	Bankfull Shea		·	Density of water = $g = 62.4 \text{ lbs/ft}^3$
40-400		ticle size (mm) at bankfull sk		dicted by the Revised Shields Diagram by
0.27	Predicted she Rosgen, 2002	ar stress required to initiate		(mm) (see Revised Shields Diagram,
	Note: If availa	ble bankfull shear stress ex	ceeds D100 of b	ped, degradation potential exists.

Swartwout Tract Cat Creek Macon County, NC

River Basin:

River Basin:
Watershed:
Stream Reach:
DA (sq mi):
1.13
Date:

2 4.75 1.03 1.12 2.86 3.56 0.02 0.07 1.85 2.44 0% 1% 0% 1% 2.40 0% 1% 0% 1%	103 1.12 1.2 1.23 1.03 1.12 1.2 1.23 2.88 3.56 3.08 3.78 0.02 0.07 0.04 0.28 1.85 2.44 1.88 2.55 0% 1% 0% 2% 0% 1% 1% 3% 0.00 1 1% 0.00 0.00 0.00 0.00 0.00 0.00	103 1.12 1.2 1.23 1.28 1.16 1.15 1.16 1.18 1.24 1.76 1.76 1.18 1.24 1.76 1.76 1.85 2.44 1.88 2.55 2.56 0% 1% 1% 1% 1% 3% 7% 1% 1% 1% 3% 7% 1% 1% 3.44 1.88 2.55 2.56 0% 1% 1% 1% 3% 7% 1% 1% 1% 3% 7% 1% 1% 3% 7% 1% 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42	1.03 1.12 1.2 1.23 1.28 1.29 1.05 1.10 2.5 1.05 1.10 1.24 1.51 1.76 2.79 2.88 3.66 3.08 3.78 3.44 9.34 0.02 0.07 0.04 0.28 0.48 1.5 1.85 2.44 1.88 2.55 2.56 8.05 0.% 1% 1% 3% 7% 1.9% 1.9% 1.0% 3.0% 1.0% 1.9% 1.0% 3.0% 1.0% 1.0% 3.0% 3.0% 1.0% 1.0% 3.0% 1.0% 1.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3	1.03 1.12 1.2 1.23 1.28 1.29 1.05 1.10 2.5 1.00 1.10 1.05 1.10 1.25 1.29 1.29 1.28 1.29 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
2 4.75 1.03 1.12 1.05 1.19 2.88 3.56 0.02 0.07 1.85 2.44 0% 1% 0% 1% 0% 1%	103 1.12 1.2 1.23 1.03 1.12 1.2 1.23 2.88 3.56 3.08 3.78 0.02 0.07 0.04 0.28 1.85 2.44 1.88 2.55 0% 1% 0% 2% 0% 1% 1% 3% 0.00 1 1% 0.00 0.00 0.00 0.00 0.00 0.00	103 1.12 1.2 1.23 1.28 1.16 1.15 1.16 1.18 1.24 1.76 1.76 1.18 1.24 1.76 1.76 1.85 2.44 1.88 2.55 2.56 0% 1% 1% 1% 1% 3% 7% 1% 1% 1% 3% 7% 1% 1% 3.44 1.88 2.55 2.56 0% 1% 1% 1% 3% 7% 1% 1% 1% 3% 7% 1% 1% 3% 7% 1% 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42	1.03 1.12 1.2 1.23 1.28 1.29 1.05 1.10 2.5 1.05 1.10 1.24 1.51 1.76 2.79 2.88 3.66 3.08 3.78 3.44 9.34 0.02 0.07 0.04 0.28 0.48 1.5 1.85 2.44 1.88 2.55 2.56 8.05 0.% 1% 1% 3% 7% 1.9% 1.9% 1.0% 3.0% 1.0% 1.9% 1.0% 3.0% 1.0% 1.0% 3.0% 3.0% 1.0% 1.0% 3.0% 1.0% 1.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3	1.03 1.12 1.2 1.28 1.29 weight 1.05 1.18 1.29 1.26 2.79 weight 1.05 1.19 1.24 1.51 1.76 2.79 weight 0.02 0.07 0.04 0.28 0.04 1.5 1.237 0.06 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.9
2 4.75 1.03 1.12 1.05 1.19 2.88 3.56 0.02 0.07 1.85 2.44 0% 1% 0% 1% 0% 1%	103 1.12 1.2 1.23 1.03 1.12 1.2 1.23 2.88 3.56 3.08 3.78 0.02 0.07 0.04 0.28 1.85 2.44 1.88 2.55 0% 1% 0% 2% 0% 1% 1% 3% 0.00 1 1% 0.00 0.00 0.00 0.00 0.00 0.00	103 1.12 1.2 1.23 1.28 1.16 1.15 1.16 1.18 1.24 1.76 1.76 1.18 1.24 1.76 1.76 1.85 2.44 1.88 2.55 2.56 0% 1% 1% 1% 1% 3% 7% 1% 1% 1% 3% 7% 1% 1% 3.44 1.88 2.55 2.56 0% 1% 1% 1% 3% 7% 1% 1% 1% 3% 7% 1% 1% 3% 7% 1% 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42	1.03 1.12 1.2 1.23 1.28 1.29 1.05 1.10 1.05 1.10 1.10 1.10 1.10 1.10	1.03 1.12 1.2 1.28 1.29 25 dia 1.03 1.12 1.2 1.28 1.29 weight 1.05 1.00 0.07 0.04 0.28 0.05 0.07 0.04 1.88 2.55 2.56 8.05 24.91 0.06 1.06 1.06 1.06 1.06 1.06 1.06 1.0
1.12 1.19 3.56 0.07 1.0% 1.0%	4.75 9.5 12.7 1.12 1.2 1.23 1.19 1.24 1.51 3.56 3.08 3.78 0.07 0.04 0.28 1% 0% 2% 1% 1% 3% 10% 8% 10% 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	4.75 9.5 12.7 19 1.12 1.2 1.23 1.28 1.19 1.24 1.51 1.76 3.6 3.08 3.78 3.84 0.07 0.04 0.28 0.48 1% 0% 2% 4% 1% 1% 3% 7% 10% 10% 10% 3.00 3.00 40% 3.00 3.00 40% 3.00 3.00 40% 3.00 3.00 40% 3.00 3.00 40% 3.00 3.00 40% 3.00 3.00 40% 3.00 3.00 40% 3.00 40% 40%	4.75 9.5 12.7 19 25 1.12 1.2 1.28 1.28 1.29 1.19 1.24 1.51 1.76 2.79 3.56 3.08 3.78 3.84 9.34 0.07 0.04 0.28 0.48 1.5 2.44 1.88 2.55 2.56 8.05 1% 0% 2% 4% 12% 1% 1% 3% 7% 19% 10% 3% 10% 10% 32% 30% 10% 10% 32% 30% 40% 10% 32% 30% 40% 60% 60% 30% 40% 60% 60% 30% 40% 60% 60% 30% 40% 60% 60% 30% 40% 60% 60%	4.75 9.5 12.7 19 25 1.12 1.2 1.2 1.28 1.29 weight 3.16 3.08 3.78 3.48 9.34 dia 0.07 0.04 0.28 0.48 1.5 12.37 1% 0% 2% 4% 12% 1.28 1% 0% 2% 4% 12% 1.00% 1% 8% 10% 10% 10% 32% 10% 8% 10% 10% 10%
	1.2 1.23 1.24 1.61 3.08 1.86 1.86 0.04 0.28 0.08 0.06 2.65 0.06 2.65 1.88 2.65 1.8 2.65 1.8 2.65 0.06 2.66 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08	9.5 12.7 19 1.2 1.23 1.28 1.24 1.51 1.76 3.08 3.78 3.84 0.04 0.28 0.48 1.88 2.55 2.56 0% 2% 4% 1% 3% 7% 8% 10% 10% 10% 200 4 0.89% 10% 200 5.80 4% 200	9.5 12.7 19 25 1.2 1.23 1.28 1.29 1.24 1.51 1.76 2.79 3.08 3.78 3.84 9.34 0.04 0.28 0.48 1.5 1.88 2.55 2.56 8.05 0% 2% 4% 12% 1% 3% 7% 19% 8% 10% 10% 32% 8% 10% 10% 32%	9.5 12.7 19 25 dia 1.28 1.29 weight 1.24 1.51 1.76 2.79 weight 3.08 3.78 3.84 9.34 dia 1.5 1.88 2.55 2.56 8.05 24.91 0% 2% 1% 12% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2
		19 1.76 3.84 0.48 0.48 7% 7% 10%	19 25 1.28 1.29 1.76 2.79 3.84 0.34 0.48 1.5 2.56 8.05 4% 12% 7% 19% 7% 19% 10% 32%	19 25 dia 1.29 weight 1.76 2.79 weight 3.84 9.34 dia 1.5 2.56 8.05 24.91 4% 12% 7% 19% 100% 500% 0.40% 0.40% 0.40%

		ENTRAINME	NT CALCULATIO	NFORM		
Stream:		UT Cat Creek	Reach:		Swartwout UT	
Team:		AJT and GLK	Date:		Jun-03	
		Info	rmation Input Area			
28	D ₅₀	Riffle bed material D	050 (mm)			
20	D [*] 50	Bar sample D50 (mr	m)			
60.0	D _i	Largest particle from	n bar sample (mm)	0.20	(feet)	304.8 mm/foot
0.02	S _e	Existing bankfull wat	ter surface slope (ft/ft)			
1.78	d _e	Existing bankfull mea	an depth (ft)			
1.33	R	Hydraulic Radius of	Riffle Cross Section (ft)		
1.65	g _s	Submerged specific	weight of sediment			
		Calculation of Crit	ical Dimensionless S	hear Stress		
1.40	D ₅₀ /D [^] ₅₀	If value is between 3	-7 Equation 1 w	ill be used: t	_{ci} = 0.0834(D ₅₀ /D	^ ₅₀) ^{-0.872}
2.14	D _i /D ₅₀	If value is between 1			$_{ci} = 0.0384(D_i/D_{50})$	
0.0286	ť _{ci}	Critical Dimensionless	Shear Stress	Е	quation used:	2
Calcı	ulation of Ban	kfull Mean Depth Req	uired for Entrainmen	L t of Largest P	Particle in Bar Sa	ample
0.46	d _r		ill mean depth (ft)	_	$d_r = \underbrace{t_{ci}g_sD_i}_{S_e}$	-
1.78	de	Existing bankful	I mean depth (ft)			
Calcula	ation of BKF W		equired for Entrainme	ent of Larges	t Particle in Bar	Sample
0.0052	S _r	Required bankfull wa	ater surface slope (ft)		$S_r = \underbrace{t_{ci}^* g_s D_i}_{d_e}$	
0.0200	Se	Existing bankfull wa	ater surface slope (ft)			
		Sedimer	nt Transport Validatio	n .		
1.65	Bankfull Shea				er = g = 62.4 lbs/	ft ³
50-500	Moveable pa Rosgen, 200	rticle size (mm) at bank 2)	full shear stress (predi	icted by the R	evised Shields D	iagram by
0.27		ear stress required to in	nitiate movement of D _i	(mm) (see Re	vised Shields Dia	agram,
		able bankfull shear stre	ss exceeds D100 of be	ed, degradatio	n potential exists).

Swartwout Tract UT to Cat Creek Macon County, NC

RIFFLE SAMPLE
River Basin:
Watershed:
Stream Reach:
DA (sq mi):
0.86

9/11/2003

***JUST WITH SUBPAVEMENT SAMPLE 1

micro Tare Weight(lbs) Pave Sample Weight (lbs)		0.075	0.106	0.25	\rightarrow	-	-	1.18 2	4.75	9.5	12.7	19	25			\dashv	LP2
are Weight(lbs)		75	106	250	300	8 009	850		_						dia	75	20
ple Weight (lbs)							0.81	31 1.03	1.12	2 1.2	1.23	3 1.28	1.29		weight 1	1.98	1.01
							0.83	33 1.05	1.24	1.34	1.5	1.65	2.86		weight (96.0	1.06
Subpav Sample Weight (Ibs)							3.47	17 2.04	14 2.67	17 2.23	3 3.2	3.29	12.4		dia	09	75
Pave Net Weight (lbs)							0.02	0.02	0.12	2 0.14	1 0.27	7 0.37	1.57	5.5			
Subpave Net Weight(Ibs)		2001		200			2.66	1.01	-	.55 1.03	3 1.97	7 2.01	11.1	23.39			
% Pavement 0%		%0	%0	%0	%0) %0	%0 %0	%0 %	% 2%	%8 9%	2%	4.2	29%				
% Cumulative Pavement 0%		%0	%0	%0	%0) %0	%0 %0	1%	% 3%	%9 %	10%	17%	46%	100%			
% Subpavement 0%		%0	%0	%0	%0) %0	0% 11%	% 4%	% 1 %	% 4%	8%	%6	48%				
% Cumulative Subpavement 0%	SPECIAL PROPERTY.	%0	%0	%0	%0	%0	0% 11%	%91 %	% 22%	% 27%	%98 9	6 44%	91%	100%			

Particle Size Distribution for Entrainment Calculations UT Cat Creek Swartwout Tract- Madison County, NC								Medicinal Size (mm)
Particle UT Cat	100%	36.08	70%	\$60 \$60 AARES	% 40%	30%	20%	.10%

		ENTRAINMENT	CALCULATIO	N FORM
Stream:		Cat Creek	Reach:	Waldroop
Team:		AJT and GKL	Date:	Jun-03
		Informa	tion Input Area	
33	D ₅₀	Riffle bed material D50 (mm)	
12.7	D [^] 50	Bar sample D50 (mm)		
85.0	Di	Largest particle from bar	sample (mm)	0.28 (feet) 304.8 mm/foot
0.008	S _e	Existing bankfull water s	urface slope (ft/ft)	
1.78	d _e	Existing bankfull mean de	epth (ft)	
1.73	R	Hydraulic Radius of Riffle	e Cross Section (f	ft)
1.65	g _s	Submerged specific weig	ht of sediment	
		Calculation of Critical	Dimensionless	Shear Stress
2.60	D ₅₀ /D [*] ₅₀	If value is between 3-7	Equation 1 v	vill be used: $\dot{t}_{ci} = 0.0834(D_{50}/D_{50}^{^{\circ}})^{-0.872}$
2.58	D _i /D ₅₀	If value is between 1.3-3.	0 Equation 2 w	vill be used: $t_{ci}^* = 0.0384(D_i/D_{50})^{-0.887}$
0.0286	t [*] ci	Critical Dimensionless She	ar Stress	Equation used: 2
Calcu	lation of Bank	full Mean Depth Require	d for Entrainmer	nt of Largest Particle in Bar Sample
1.64	d _r	Required bankfull me	ean depth (ft)	$d_r = \underbrace{t_{oi}g_sD_i}_{S_e}$
1.78	de	Existing bankfull me	an depth (ft)	
Calculat	tion of BKF Wa	ater Surface Slope Requi	red for Entrainm	nent of Largest Particle in Bar Sample
0.0074	S _r	Required bankfull water		$S_r = \frac{\mathbf{t}_{G} \mathbf{g}_s \mathbf{D}_i}{\mathbf{d}_e}$
0.0080	Se	Existing bankfull water s	surface slope (ft)	
		Sediment Tr	ansport Validati	on
0.86	Bankfull Shea		The same of the sa	Density of water = $g = 62.4 lbs/ft^3$
20-200		ticle size (mm) at bankfull s		dicted by the Revised Shields Diagram by
0.38	Predicted she Rosgen, 2002	ar stress required to initiate)		(mm) (see Revised Shields Diagram,
	inole. II avalla	DIE Dalikiuli Stiedt Stiess e.	ACEEUS DIVU OF D	eu, uegrauation potential exists.

Waldroop Tract Cat Creek Macon County, NC

Little Tennessee Cat Creek Waldroop Tract 2.5 \$/11/2003 RIFFLE SAMPLE
River Basin:
Watershed:
Stream Reach:
DA (sq mi):

Sieve Size (mm)	0.062	0.075	0.106	6 0.25		0.3 0.6	_	5 1.18	7	4.75	9.5	12.7	19	25			LP1	_
micro		75	106	3 250		300 600	0 850									dia	73	20
Tare Weight(lbs)			ì				ļ.	0.81	1.03	1.12	1.2	1.23	1.28	1.29		weight	1.82	1.06
Pave Sample Weight (lbs)								0.82	1.06	1.24	1.43	1.78	1.67	1.68		weight	2.57	
Subpav Sample Weight (Ibs)						100 May 1	STATE OF THE PERSON NAMED IN	5.71	3.36	4.18	3.9	4.7	4.3	10.67		dia	85	80
Pave Net Weight (lbs)								0.01	0.03	0.12	0.23	0.55	0.39	0.39	4.6			
Subpave Net Weight(lbs)								4.9	2.33	3.06	2.7	3.47	3.02	9.38	32.74			
% Pavement	%0	%0	%0	%0	_	%0 %0	%0 %	%0	1%	3%	2%	12%	%8	%8				
% Cumulative Pavement	%0	%0	%0	%0 °		\vdash	_	%0	1%	3%	8%	20%	29%	37%	100%			
% Subpavement	%0	%0	%0	%0 "		%0 %0	%0 %	15%	%2	%6	8%	11%	%6	29%				
% Cumulative Subpayement	%U	%0	%0		200			15%	н	31%	40%	20%	20%	88%	400%			

20% 20% 20% 20% 20% 20% 20% 20% 20% 20%
--

		ENTRAINMENT C	ALCULATIO	N FORM		
Stream:		Cat Creek	Reach:	Control of the contro	Parker	
Team:		AJT and GKL	Date:	A TANK	1-Jun	
		Information	on Input Area			
23	D ₅₀	Riffle bed material D50 (m	m)			
3.5	D [^] 50	Bar sample D50 (mm)				
50.0	D _i	Largest particle from bar s	ample (mm)	0.16	(feet) 304.	8 mm/foot
0.006	S _e	Existing bankfull water sur	face slope (ft/ft)			
1.6	d _e	Existing bankfull mean dep	oth (ft)			
1.84	R	Hydraulic Radius of Riffle	Cross Section (f	t)	A 5 - 5	
1.65	g _s	Submerged specific weight	of sediment			
		Calculation of Critical D	imensionless	Shear Stress		
6.57	D ₅₀ /D ² ₅₀	If value is between 3-7	Equation 1 w	vill be used: t	$_{ci} = 0.0834(D_{50}/D_{50}^{^{\circ}})^{-1}$	0.872
2.17	D _i /D ₅₀	If value is between 1.3-3.0	Equation 2 w	vill be used: t c	$c_i = 0.0384(D_i/D_{50})^{-0.88}$	37
0.0313	t [*] ci	Critical Dimensionless Shear	r Stress	E	quation used:	1
Calcu	lation of Bank	full Mean Depth Required	for Entrainmen	t of Largest P	article in Bar Samp	le
1.41	d _r	Required bankful l mea	n depth (ft)		$d_{r} = t_{ci} g_{s} D_{i}$ S_{e}	
1.60	de	Existing bankfull mear	n depth (ft)			
Calculat	tion of BKF Wa	ater Surface Slope Require	d for Entrainm	ent of Largest	t Particle in Bar Sar	nple
0.0053	S _r	Required bankfull water su			$S_r = \underbrace{t_{ci}g_sD_i}_{d_e}$	
0.0060	Se	Existing bankfull water su	rface slope (ft)			
		Sediment Trai	nsport Validation	on		
0.69	Bankfull Shea				er = g = 62.4 lbs/ft ³	
20-150	Moveable par Rosgen, 2002	ticle size (mm) at bankfull sh	ear stress (pred	licted by the Re	evised Shields Diagra	am by
0.21	Predicted she Rosgen, 2002	ar stress required to initiate (m,
	Note: If availa	ble bankfull shear stress exc	eeds D100 of b	ed, degradation	n potential exists.	

Little Tennessee RIFFLE SAMPLE
River Basin:
Watershed:
Stream Reach:
DA (sq mi):

Stream Reach: F BA (sq ml): 2	Cat Creek Parker Tract 2.6 9/11/2003														
Sieve Size (mm)	0.062	0.075	0.106	0.25	0.3	9.0	0.85	1.18	2	4.75	9.5	12.7	19	25	
micro		75	106	250	300	009	850								
Tare Weight(lbs)			9-9-1					0.81	1.03	1.12	1.2	1.23	1.28	1.29	
Pave Sample Weight (lbs)								0.87	1.04	1.27	1.35	1.56	1.5	5.08	
Subpav Sample Weight (lbs)								9.67	3.7	4.48	3.59	4.16	3.44	5.5	
Pave Net Weight (lbs)								90.0	0.01	0.15	0.15	0.33	0.22	3.79	7.42
Subpave Net Weight(lbs)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1000 C	8.86	2.67	3.36	2.39	2.93	2.16	4.21	27.15
% Pavement	%0	%0	%0	%0	%0	%0	%0	1%	%0	2%	2%	4%	3%	51%	
% Cumulative Pavement	%0	%0	%0	%0	%0	%0	%0	1%	1%	3%	2%	%6	12%	63%	100%
% Subpavement	%0	%0	%0	%0	%0	%0	%0	33%	10%	12%	%6	11%	8%	16%	
% Cumulative Subpavement	%0	%0	%0	%0	%0	%0	%0	33%	42%	92%	64%	74%	82%	%86	100%

%0 %0 %0 %0 %0 °

	5	LPZ
dia	65	54
weight	2.08	0.63
weight	0.33	0.24
dia	20	37

												9001
ations				The same	an Supplied		ПВШО	Diffe Pavor	Ž	1		01
Particle Size Distribution for Entrainment Calculations Cat Creek Parker Tract-Madison County, NC							1					Material Size (mm)
Particle Cal												- 0
	100%	%06	90%	70%	%09	90%	40%	30%	50%	10%	0.00	1001

		ENTRAINMEN	T CALCULATIO	N FORM		
Stream:		Cat Creek	Reach:		Preserve	
Team:		AJT and GKL	Date:		Jun-03	
		Inforn	nation Input Area			
13	D ₅₀	Riffle bed material D5	0 (mm)			
9	D [^] 50	Bar sample D50 (mm))			
31.0	Di	Largest particle from b	oar sample (mm)	0.10	(feet)	304.8 mm/foot
0.005	S _e	Existing bankfull water	r surface slope (ft/ft)			
1.4	d _e	Existing bankfull mean	depth (ft)			
1.84	R	Hydraulic Radius of Ri	iffle Cross Section (ft	:)		
1.65	g _s	Submerged specific we	eight of sediment			
		Calculation of Critic	al Dimensionless S	Shear Stress		
1.44	D ₅₀ /D ² ₅₀	If value is between 3-7	Z Equation 1 w	ill be used: t	$_{ii} = 0.0834(D_{50}/D_{50})$) [^] 50) ^{-0.872}
2.38	D _i /D ₅₀	If value is between 1.3			$_{i} = 0.0384(D_{i}/D_{5})$	
0.0286	t [*] ci (Critical Dimensionless S			quation used:	2
Calcu	lation of Bank	full Mean Depth Requi	red for Entrainment	t of Largest Pa	article in Bar S	amnle
0.96	d _r	Required bankfu ll			$d_r = t_{ci} g_s D_i$ S_{e}	
1.40	de	Existing bankfull r	mean depth (ft)			
Calculat	ion of BKF Wa	ater Surface Slope Req	uired for Entrainme	ent of Largest	Particle in Bar	· Sample
0.0034	S _r	Required bankfull water		-	$S_r = \underbrace{t_{ci}^T g_s D_i}_{d_e}$	·
0.0050	Se	Existing bankfull wate	er surface slope (ft)			
		 Sediment	Transport Validation	on		
0.57	Bankfull Shea				er = g = 62.4 lbs	/ft ³
18-200	Moveable part Rosgen, 2002	icle size (mm) at bankf u)	ıll shear stress (pred	icted by the Re	evised Shields D	Diagram by
0.13	Predicted shear Rosgen, 2002	ar stress required to initi)	ate movement of D,	(mm) (see Rev	vised Shields Dia	agram,
		ble bankfull shear stress	exceeds D100 of be	ed, degradatior	n potential exist	S.

Preserve Tract Cat Creek Macon County, NC

RIFFLE SAMPLE
River Basin:
Watershed:
Stream Reach:
DA (sq mi):
Safe:
9/11/2003

	0000	1	00,0	200	000	0	200	4	(. 11	1	100	4	20			1	1
Sieve Size (mm)	0.062	0.075	0.106	0.75	0.3	9.0	0.85	1.18	7	4.75	9.5	17.7	13	22			7	LP2
micro		75	106	250	300	009	850									dia	33	30
Tare Weight(lbs)	North Control					•	,	0.81	1.03	1.12	1.2	1.23	1.28	1.29		weight	0.15	0.08
Pave Sample Weight (lbs)								0.84	1.05	1.23	1.33	1.5	1.36	1.44		weight	0.23	0.19
Subpav Sample Weight (lbs)	STATE OF SECURE STATE		S 1850					3.52	1.66	2.13	1.77	1.7	1.86	1.38		dia	31	31
Pave Net Weight (lbs)								0.03	0.02	0.11	0.13	0.27	90.0	0.15	1.02			
Subpave Net Weight(lbs)						ST AS		2.71	0.63	1.01	0.57	0.47	0.58	60.0	6.48			
% Pavement	%0	%0	%0	%0	%0	%0	%0	3%	2%	11%	13%	%97	%8	15%				
% Cumulative Pavement	%0	%0	%0	%0	%0	%0	%0	3%	%9	16%	28%	%59	%89	%22	100%			
% Subpavement	%0	%0	%0	%0	%0	%0	%0	42%	10%	16%	%6	%2	%6	1%				
% Cumulative Subpavement	%0	%0	%0	%U	%0	%0	%0	40°K	200%	87%	76%	830%	%660	%76	100%			